You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A readable 2006 synthesis of three main areas in the modern theory of stochastic processes.
The papers contained in this volume are an indication of the topics th discussed and the interests of the participants of The 9 International Conference on Probability in Banach Spaces, held at Sandjberg, Denmark, August 16-21, 1993. A glance at the table of contents indicates the broad range of topics covered at this conference. What defines research in this field is not so much the topics considered but the generality of the ques tions that are asked. The goal is to examine the behavior of large classes of stochastic processes and to describe it in terms of a few simple prop erties that the processes share. The reward of research like this is that occasionally one can gain deep insight, ev...
The study of chaos expansions and multiple Wiener-Ito integrals has become a field of considerable interest in applied and theoretical areas of probability, stochastic processes, mathematical physics, and statistics. Divided into four parts, this book features a wide selection of surveys and recent developments on these subjects. Part 1 introduces the concepts, techniques, and applications of multiple Wiener-Ito and related integrals. The second part includes papers on chaos random variables appearing in many limiting theorems. Part 3 is devoted to mixing, zero-one laws, and path continuity properties of chaos processes. The final part presents several applications to stochastic analysis.
The first international conference on Probability in Banach Spaces was held at Oberwolfach, West Germany, in 1975. It brought together European researchers who, under the inspiration of the Schwartz Seminar in Paris, were using probabi listic methods in the study of the geometry of Banach spaces, a rather small number of probabilists who were already studying classical limit laws on Banach spaces, and a larger number of probabilists, specialists in various aspects of the study of Gaussian processes, whose results and techniques were of interest to the members of the first two groups. This first conference was very fruitful. It fos tered a continuing relationship among 50 to 75 probabilists a...
The first references to statistical extremes may perhaps be found in the Genesis (The Bible, vol. I): the largest age of Methu'selah and the concrete applications faced by Noah-- the long rain, the large flood, the structural safety of the ark --. But as the pre-history of the area can be considered to last to the first quarter of our century, we can say that Statistical Extremes emer ged in the last half-century. It began with the paper by Dodd in 1923, followed quickly by the papers of Fre-chet in 1927 and Fisher and Tippett in 1928, after by the papers by de Finetti in 1932, by Gumbel in 1935 and by von Mises in 1936, to cite the more relevant; the first complete frame in what regards pro...
The changes to U.S. immigration law that were instituted in 1965 have led to an influx of West African immigrants to New York, creating an enclave Harlem residents now call ''Little Africa.'' These immigrants are immediately recognizable as African in their wide-sleeved robes and tasseled hats, but most native-born members of the community are unaware of the crucial role Islam plays in immigrants' lives. Zain Abdullah takes us inside the lives of these new immigrants and shows how they deal with being a double minority in a country where both blacks and Muslims are stigmatized. Dealing with this dual identity, Abdullah discovers, is extraordinarily complex. Some longtime residents embrace th...
Several stochastic processes related to transient Lévy processes with potential densities , that need not be symmetric nor bounded on the diagonal, are defined and studied. They are real valued processes on a space of measures endowed with a metric . Sufficient conditions are obtained for the continuity of these processes on . The processes include -fold self-intersection local times of transient Lévy processes and permanental chaoses, which are `loop soup -fold self-intersection local times' constructed from the loop soup of the Lévy process. Loop soups are also used to define permanental Wick powers, which generalizes standard Wick powers, a class of -th order Gaussian chaoses. Dynkin type isomorphism theorems are obtained that relate the various processes. Poisson chaos processes are defined and permanental Wick powers are shown to have a Poisson chaos decomposition. Additional properties of Poisson chaos processes are studied and a martingale extension is obtained for many of the processes described above.
What is high dimensional probability? Under this broad name we collect topics with a common philosophy, where the idea of high dimension plays a key role, either in the problem or in the methods by which it is approached. Let us give a specific example that can be immediately understood, that of Gaussian processes. Roughly speaking, before 1970, the Gaussian processes that were studied were indexed by a subset of Euclidean space, mostly with dimension at most three. Assuming some regularity on the covariance, one tried to take advantage of the structure of the index set. Around 1970 it was understood, in particular by Dudley, Feldman, Gross, and Segal that a more abstract and intrinsic point of view was much more fruitful. The index set was no longer considered as a subset of Euclidean space, but simply as a metric space with the metric canonically induced by the process. This shift in perspective subsequently lead to a considerable clarification of many aspects of Gaussian process theory, and also to its applications in other settings.
Founded in 1931 by Otto Neugebauer as the printed documentation service “Zentralblatt für Mathematik und ihre Grenzgebiete”, Zentralblatt MATH (ZBMATH) celebrates its 80th anniversary in 2011. Today it is the most comprehensive and active reference database in pure and applied mathematics worldwide. Many prominent mathematicians have been involved in this service as reviewers or editors and have, like all mathematicians, left their footprints in ZBMATH, in a long list of entries describing all of their research publications in mathematics. This book provides one review from each of the 80 years of ZBMATH. Names like Courant, Kolmogorov, Hardy, Hirzebruch, Faltings and many others can be found here. In addition to the original reviews, the book offers the authors' profiles indicating their co-authors, their favorite journals and the time span of their publication activities. In addition to this, a generously illustrated essay by Silke Göbel describes the history of ZBMATH.