You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussionUnderstanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and com...
This collection commemorates the occasion of the honorary symposium that celebrated the 75th birthday and lifelong contributions of Professor K.L. Murty. The topics cover the present status and recent advances in research areas in which he made seminal contributions. The volume includes articles on a variety of topics such as high-temperature deformation behaviors of materials (elevated temperature creep, tensile, fatigue, superplasticity) and their micromechanistic interpretation, understanding mechanical behavior of HCP metals/alloys using crystallographic texture, radiation effects on deformation and creep of materials, mechanical behavior of nanostructured materials, fracture and fracture mechanisms, development and application of small-volume mechanical testing techniques, and general structure-property correlations.
The present collection of articles focuses on the mechanical strength properties at micro- and nanoscale dimensions of body-centered cubic, face-centered cubic and hexagonal close-packed crystal structures. The advent of micro-pillar test specimens is shown to provide a new dimensional scale for the investigation of crystal deformation properties. The ultra-small dimensional scale at which these properties are measured is shown to approach the atomic-scale level at which model dislocation mechanics descriptions of crystal slip and deformation twinning behaviors are proposed to be operative, including the achievement of atomic force microscopic measurements of dislocation pile-up interactions...
By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated. This book includes recent contribution...
This volume presents the major outcome of the IUTAM symposium on “Advanced Materials Modeling for Structures”. It discusses advances in high temperature materials research, and also to provides a discussion the new horizon of this fundamental field of applied mechanics. The topics cover a large domain of research but place a particular emphasis on multiscale approaches at several length scales applied to non linear and heterogeneous materials. Discussions of new approaches are emphasised from various related disciplines, including metal physics, micromechanics, mathematical and computational mechanics.
A comprehensive treatise on the hot working of aluminum and its alloys, Hot Deformation and Processing of Aluminum Alloys details the possible microstructural developments that can occur with hot deformation of various alloys, as well as the kind of mechanical properties that can be anticipated. The authors take great care to explain and differenti
Constitutive equations refer to 'the equations that constitute the material response' at any point within an object. They are one of the ingredients necessary to predict the deformation and fracture response of solid bodies (among other ingredients such as the equations of equilibrium and compatibility and mathematical descriptions of the configuration and loading history). These ingredients are generally combined together in complicated computer programs, such as finite element analyses, which serve to both codify the pertinent knowledge and to provide convenient tools for making predictions of peak stresses, plastic strain ranges, crack growth rates, and other quantities of interest. Such ...
The Light Metals symposia at the TMS Annual Meeting & Exhibition present the most recent developments, discoveries, and practices in primary aluminum science and technology. The annual Light Metals volume has become the definitive reference in the field of aluminum production and related light metal technologies. The 2018 collection includes papers from the following symposia: 1.Alumina and Bauxite2.Aluminum Alloys, Processing, and Characterization3.Aluminum Reduction Technology4.Cast Shop Technology5. Cast Shop Technology: Energy Joint Session6. Cast Shop Technology: Fundamentals of Aluminum Alloy Solidification Joint Session7. Cast Shop Technology: Recycling and Sustainability Joint Session8. Electrode Technology for Aluminum Production9. Perfluorocarbon Generation and Emissions from Industrial Processes10. Scandium Extraction and Use in Aluminum Alloys
Presenting papers from the 2013 annual meeting of The Minerals, Metals & Materials Society (TMS), this volume covers developments in all aspects of high temperature electrochemistry, from the fundamental to the empirical and from the theoretical to the applied.
None