You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
This text updates the teaching of college geometry based upon three fundamental ideas: geometries only approximate reality; the best presentation of a geometry is by transformation groups; and points and other geometric objects should be co-ordinated. The work is designed to be engaging and accessible, and it describes geometry as it is understood and used by contemporary mathematicians and theoretical scientists.
Engaging, accessible, and extensively illustrated, this brief, but solid introduction to modern geometry describes geometry as it is understood and used by contemporary mathematicians and theoretical scientists. Basically non-Euclidean in approach, it relates geometry to familiar ideas from analytic geometry, staying firmly in the Cartesian plane. It uses the principle geometric concept of congruence or geometric transformation--introducing and using the Erlanger Program explicitly throughout. It features significant modern applications of geometry--e.g., the geometry of relativity, symmetry, art and crystallography, finite geometry and computation. Covers a full range of topics from plane geometry, projective geometry, solid geometry, discrete geometry, and axiom systems. For anyone interested in an introduction to geometry used by contemporary mathematicians and theoretical scientists.
The significantly expanded second edition of this book combines a fascinating account of the life and work of Bernhard Riemann with a lucid discussion of current interaction between topology and physics. The author, a distinguished mathematical physicist, takes into account his own research at the Riemann archives of Göttingen University and developments over the last decade that connect Riemann with numerous significant ideas and methods reflected throughout contemporary mathematics and physics. Special attention is paid in part one to results on the Riemann–Hilbert problem and, in part two, to discoveries in field theory and condensed matter.
Hired! is a practical, life-career planning guide for students from all manner of backgrounds! It Unlike other textbooks, Hired! focuses on helping students develop an ongoing, flexible portfolio of information about themselves and work in order to prepare them for satisfying and productive lives in an ever-changing world. The exercises and writing activities encourage students to take a proactive role in creating their futures, motivating them to become personally responsible for their life and to become an active participant in its process.
The basics of what every scientist and engineer should know, from complex numbers, limits in the complex plane, and complex functions to Cauchy's theory, power series, and applications of residues. 1974 edition.
Calculus is an extremely powerful tool for solving a host of practical problems in fields as diverse as physics, biology, and economics, to mention just a few. In this rigorous but accessible text, a noted mathematician introduces undergraduate-level students to the problem-solving techniques that make a working knowledge of calculus indispensable for any mathematician. The author first applies the necessary mathematical background, including sets, inequalities, absolute value, mathematical induction, and other "precalculus" material. Chapter Two begins the actual study of differential calculus with a discussion of the key concept of function, and a thorough treatment of derivatives and limi...
Massive compilation offers detailed, in-depth discussions of vector spaces, Hahn-Banach theorem, fixed-point theorems, duality theory, Krein-Milman theorem, theory of compact operators, much more. Many examples and exercises. 32-page bibliography. 1965 edition.
Martin Gardner enormously expanded the field of recreational mathematics with the Mathematical Games columns he wrote for Scientific American for over 25 years and the more than 70 books he published. He also had a long relationship with the Mathematical Association of America, publishing articles in MAA journals right up to his death in 2010. This book collects the articles Gardner wrote for the MAA in the twenty-first century, together with other articles the MAA published from 1999 to 2012 that spring from and comment on his work.
Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.