You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A self-contained, accessible introduction to the basic concepts, formalism and recent advances in electromagnetic scattering, for researchers and graduate students.
A thorough and up-to-date treatment of electromagnetic scattering by small particles.
This monograph on multiple scattering of light by small particles is an ideal resource for science professionals, engineers, and graduate students.
Only satellite-based remote-sensing instruments generate the wealth of global data on the concentrations of atmospheric constituents that are necessary for long-term monitoring of the atmosphere. This set of courses and lectures sponsored by ICTP in Trieste focuses on remote sensing for atmospheric applications and inverse methods to assess atmospheric components, gases, aerosols and clouds. It addresses primarily graduate students and young researchers in the atmospheric sciences but will be useful for all those wishing to study various techniques for exploring the atmosphere by remote sensing. Contributions span topics such as on IGOS (Integrated Global Observing Strategy), electromagnetic scattering by non-spherical particles, forward-modelling requirements and the information content problem, Earth radiation, and aerosol monitoring by LIDAR.
A comprehensive guide to the theory, practice and applications of optical tweezers, combining state-of-the-art research with a strong pedagogic approach.
A comprehensive review of state-of-the-art techniques, models and research methods in modern astronomical polarimetry.
None
Clouds affect the climate of the Earth, and they are an important factor in the weather. Therefore, their radiative properties must be understood in great detail. This book summarizes current knowledge on cloud optical properties, for example their ability to absorb, transmit, and reflect light, which depends on the clouds’ geometrical and microphysical characteristics such as sizes of droplets and crystals, their shapes, and structures. In addition, problems related to the image transfer through clouds and cloud remote sensing are addressed in this book in great detail. This book can be an important source of information on theoretical cloud optics for cloud physicists, meteorologists and optical engineers. All basic ideas of optics as related to scattering of light in clouds (e.g. Mie theory and radiative transfer) are considered in a self consistent way. Consequently, the book can also be a useful textbook to newcomers to the field.
Waves represent an important topic of study in physics, mathematics, and engineering. This volume is a resource book for those interested in understanding the physics underlying nanotechnology and mesoscopic phenomena. It aims to bridge the gap between the textbooks and research frontiers in wave related topics.
This book gives a much needed explanation of the basic physical principles of radiative transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. The editors provide, for the first time, an easy path from theory to practical algorithms in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing, and providing the specifics and intercomparison of all current and historical retrieval methods.