You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume presents articles originating from invited talks at an exciting international conference held at The Fields Institute in Toronto celebrating the sixtieth birthday of the renowned mathematician, Vladimir Arnold. Experts from the world over--including several from "Arnold's school"--gave illuminating talks and lively poster sessions. The presentations focused on Arnold's main areas of interest: singularity theory, the theory of curves, symmetry groups, dynamical systems, mechanics, and related areas of mathematics. The book begins with notes of three lectures by V. Arnold given in the framework of the Institute's Distinguished Lecturer program. The topics of the lectures are: (1) From Hilbert's Superposition Problem to Dynamical Systems (2) Symplectization, Complexification, and Mathematical Trinities (3) Topological Problems in Wave Propagation Theory and Topological Economy Principle in Algebraic Geometry. Arnold's three articles include insightful comments on Russian and Western mathematics and science. Complementing the first is Jurgen Moser's "Recollections", concerning some of the history of KAM theory.
Since the publication of "Theory of Games and Economic Behavior" by von Neumann and Morgenstern, the concept of games has played an increasing role in economics. It also plays a role of growing importance in other sciences, including biology, political science, and psychology. Many scientists have made seminal advances and continue to be leaders in the field, including Harsanyi, Shapley, Shubik, and Selten. Professor Robert Aumann, in addition to his important contributions to game theory and economics, made a number of significant contributions to mathematics. This volume provides a collection of essays in mathematical economics and game theory, including cutting-edge research on noncoopera...
Dedicated to the late Juan Carlos Simo, this volume contains the proceedings of a workshop held at the Fields Institute in October 1993. The articles focus on current algorithms for the integration of mechanical systems, from systems in celestial mechanics to coupled rigid bodies to fluid mechanics. The scope of the articles ranges from symplectic integration methods to energy-momentum methods and related themes.
This volume presents the proceedings of workshops on stable homotopy theory and on unstable homotopy theory held at The Field Institute as part of the homotopy program for the year 1996. The papers in the volume describe current research in the subject, and all included works were refereed. Rather than being a summary of work to be published elsewhere, each paper is the unique source for the new material it contains. The book contains current research from international experts in the subject area, and presents open problems with directions for future research.
The conference proceedings volume is produced in connection with the second Great Lakes K-theory Conference that was held at The Fields Institute for Research in Mathematical Sciences in March 1996. The volume is dedicated to the late Bob Thomason, one of the leading research mathematicians specializing in algebraic K-theory. In addition to research papers treated directly in the lectures at the conference, this volume contains the following: i) several timely articles inspired by those lectures (particularly by that of V. Voevodsky), ii) an extensive exposition by Steve Mitchell of Thomason's famous result concerning the relationship between algebraic K-theory and etale cohomology, iii) a definitive exposition by J-L. Colliot-Thelene, R. Hoobler, and B. Kahn (explaining and elaborating upon unpublished work of O. Gabber) of Bloch-Ogus-Gersten type resolutions in K-theory and algebraic geometry. This volume will be important both for researchers who want access to details of recent development in K-theory and also to graduate students and researchers seeking good advanced exposition.
This volume contains the proceedings of the International Symposium on Nonlinear Dynamics and Stochastic Mechanics held at the Fields Institute for Research in Mathematical Sciences from August - September (1993), as part of the 1992-93 Program Year on Dynamical Systems and Bifurcation Theory. In recent years, mathematicians and applied scientists have made significant progress in understanding and have developed powerful tools for the analysis of the complex behaviour of deterministic and stochastic dynamical systems. By moving beyond classical perturbation methods to more general geometrical, computational, and analytical methods, this book is at the forefront in transferring these new mathematical ideas into engineering practice. This work presents the solutions of some specific problems in engineering structures and mechanics and demonstrates by explicit example these new methods of solution.
This book presents the proceedings from the International Conference held in Halifax, NS in July 1997. Funded by The Fields Institute and Le Centre de Recherches Mathématiques, the conference was held in honor of the retirement of Professors Lynn Erbe and Herb I. Freedman (University of Alberta). Featured topics include ordinary, partial, functional, and stochastic differential equations and their applications to biology, epidemiology, neurobiology, physiology and other related areas. The 41 papers included in this volume represent the recent work of leading researchers over a wide range of subjects, including bifurcation theory, chaos, stability theory, boundary value problems, persistence theory, neural networks, disease transmission, population dynamics, pattern formation and more. The text would be suitable for a graduate or advanced undergraduate course study in mathematical biology. Features: An overview of current developments in differential equations and mathematical biology. Authoritative contributions from over 60 leading worldwide researchers. Original, refereed contributions.
Noncommutative geometry is a new field that is among the great challenges of present-day mathematics. Its methods allow one to treat noncommutative algebras - such as algebras of pseudodifferential operators, group algebras, or algebras arising from quantum field theory - on the same footing as commutative algebras, that is, as spaces. Applications range over many fields of mathematics and mathematical physics. This volume contains the proceedings of the workshop on "Cyclic Cohomology and Noncommutative Geometry" held at the Fields Institute in June 1995.
This book presents the lecture notes and articles from the workshop on hydrodynamic limits held at The Fields Institute (Toronto). The first part of the book contains the notes from the mini-course given by Professor S. R. S. Varadhan. The second part contains research articles reviewing the diverse progress in the study of hydrodynamic limits and related areas. This book offers a comprehensive introduction to the theory and its techniques, including entropy and relative entropy methods, large deviation estimates, and techniques in nongradient systems. This book, especially the lectures of Part I, could be used as a text for an advanced graduate course in hydrodynamic limits and interacting particle systems.
Vertex operator algebras are a class of algebras underlying a number of recent constructions, results, and themes in mathematics. These algebras can be understood as ''string-theoretic analogues'' of Lie algebras and of commutative associative algebras. They play fundamental roles in some of the most active research areas in mathematics and physics. Much recent progress in both physics and mathematics has benefited from cross-pollination between the physical and mathematical points of view. This book presents the proceedings from the workshop, ''Vertex Operator Algebras in Mathematics and Physics'', held at The Fields Institute. It consists of papers based on many of the talks given at the conference by leading experts in the algebraic, geometric, and physical aspects of vertex operator algebra theory. The book is suitable for graduate students and research mathematicians interested in the major themes and important developments on the frontier of research in vertex operator algebra theory and its applications in mathematics and physics.