You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An overview of the latest advances in the synthesis, characterization and applications of dendrimers and other complex dendritic architectures.
Polymers are huge macromolecules composed of repeating structural units. While polymer in popular usage suggests plastic, the term actually refers to a large class of natural and synthetic materials. Due to the extraordinary range of properties accessible, polymers have come to play an essential and ubiquitous role in everyday life - from plastics and elastomers on the one hand to natural biopolymers such as DNA and proteins on the other hand. The study of polymer science begins with understanding the methods in which these materials are synthesized. Polymer synthesis is a complex procedure and can take place in a variety of ways. This book brings together the "Who is who" of polymer science to give the readers an overview of the large field of polymer synthesis. It is a one-stop reference and a must-have for all Chemists, Polymer Chemists, Chemists in Industry, and Materials Scientists.
Dendrimers, hyperbranched macromolecules, emerged just few decades ago but show promising potential as drug delivery nanocarriers, theranostic agents and gene vectors; in the pharmaceutical research and innovation area as well as in other healthcare applications. Although tremendous advancements have been made in dendrimer chemistry and their applications since their emergence, the synthesis, development and design of pure and safe dendrimer-based products have been a major challenge in this area. This book, edited by well-known researchers in the area of nanomaterials and drug-based drug delivery applications, exhaustively covers the nanotechnological aspects, concepts, properties, characte...
The maturation of nanotechnology has revealed it to be a unique and distinct discipline rather than a specialization within a larger field. Its textbook cannot afford to be a chemistry, physics, or engineering text focused on nano. It must be an integrated, multidisciplinary, and specifically nano textbook. The archetype of the modern nano textbook
Supramolecular chemistry is ‘chemistry beyond the molecule’ - the chemistry of molecular assemblies and intermolecular bonds. It is one of today’s fastest growing disciplines, crossing a range of subjects from biological chemistry to materials science; and from synthesis to spectroscopy. Supramolecular Chemistry is an up-to-date, integrated textbook that tells the newcomer to the field everything they need to know to get started. Assuming little in the way of prior knowledge, the book covers the concepts behind the subject, its breadth, applications and the latest contemporary thinking in the area. It also includes coverage of the more important experimental and instrumental techniques...
Optical Fiber Telecommunications VI (A&B) is the sixth in a series that has chronicled the progress in the R&D of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition brings a fresh look to many essential topics, including devices, subsystems, systems and networks. A central theme is the enabling of high-bandwidth communications in a cost-effective manner for the development of customer applications. These volumes are an ideal reference for R&D engineers and managers, optical systems implementers, university researchers and students, network operators, and investors. Volume A is devoted to components and subsystems, including photonic integrated circuits, multicore and few-mode fibers, photonic crystals, silicon photonics, signal processing, and optical interconnections.
This chapter treats several approaches for employing nanophotonics or near-nanophotonics concepts to create low-power switches. The partly interrelated issues of low-power dissipation and small device footprint are elucidated and figures of merit for switches formulated. Both optically and electronically controlled optical switches are treated and the crucial role of material development emphasized, illustrated by several examples, including both theoretical analysis of switch concepts and experimentally realized switches. Thus, electronically controlled switches based on hybrid, metamaterial, and nanoparticle plasmonics, electrooptic polymers as well as switches based on silicon and photonic crystals are discussed. The all-optical switches focus on third-order nonlinear effects and carrier-induced refractive index changes in III–V materials, as well as on emerging concepts of near-field-coupled quantum-dot switches. A brief comparison to electronic switches is done.
This book is a printed edition of the Special Issue "Dendrimers: A Themed Issue in Honor of Professor Donald A. Tomalia on the Occasion of His 80th Birthday" that was published in Molecules