Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Processor and System-on-Chip Simulation
  • Language: en
  • Pages: 343

Processor and System-on-Chip Simulation

Simulation of computer architectures has made rapid progress recently. The primary application areas are hardware/software performance estimation and optimization as well as functional and timing verification. Recent, innovative technologies such as retargetable simulator generation, dynamic binary translation, or sampling simulation have enabled widespread use of processor and system-on-chip (SoC) simulation tools in the semiconductor and embedded system industries. Simultaneously, processor and SoC simulation is still a very active research area, e.g. what amounts to higher simulation speed, flexibility, and accuracy/speed trade-offs. This book presents and discusses the principle technologies and state-of-the-art in high-level hardware architecture simulation, both at the processor and the system-on-chip level.

PROCEEDINGS OF THE 24TH CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN – FMCAD 2024
  • Language: en
  • Pages: 316

PROCEEDINGS OF THE 24TH CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN – FMCAD 2024

Die Proceedings zur Konferenz „Formal Methods in Computer-Aided Design 2024“ geben aktuelle Einblicke in ein spannendes Forschungsfeld. Zum fünften Mal erscheinen die Beiträge der Konferenzreihe „Formal Methods in Computer-Aided Design“ (FMCAD) als Konferenzband bei TU Wien Academic Press. Der aktuelle Band der seit 2006 jährlich veranstalteten Konferenzreihe präsentiert in 35 Beiträgen neueste wissenschaftliche Erkenntnisse aus dem Bereich des computergestützten Entwerfens. Die Beiträge behandeln formale Aspekte des computergestützten Systemdesigns einschließlich Verifikation, Spezifikation, Synthese und Test. Die FMCAD-Konferenz findet im Oktober 2024 in Prag, Tschechische Republik, statt. Sie gilt als führendes Forum im Bereich des computer-aided design und bietet seit ihrer Gründung Forschenden sowohl aus dem akademischen als auch dem industriellen Umfeld die Möglichkeit, sich auszutauschen und zu vernetzen.

Deep Learning Systems
  • Language: en
  • Pages: 245

Deep Learning Systems

This book describes deep learning systems: the algorithms, compilers, and processor components to efficiently train and deploy deep learning models for commercial applications. The exponential growth in computational power is slowing at a time when the amount of compute consumed by state-of-the-art deep learning (DL) workloads is rapidly growing. Model size, serving latency, and power constraints are a significant challenge in the deployment of DL models for many applications. Therefore, it is imperative to codesign algorithms, compilers, and hardware to accelerate advances in this field with holistic system-level and algorithm solutions that improve performance, power, and efficiency. Advan...

PROCEEDINGS OF THE 22ND CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN – FMCAD 2022
  • Language: en
  • Pages: 405

PROCEEDINGS OF THE 22ND CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN – FMCAD 2022

The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system testing.

A Primer on Memory Persistency
  • Language: en
  • Pages: 95

A Primer on Memory Persistency

This book introduces readers to emerging persistent memory (PM) technologies that promise the performance of dynamic random-access memory (DRAM) with the durability of traditional storage media, such as hard disks and solid-state drives (SSDs). Persistent memories (PMs), such as Intel's Optane DC persistent memories, are commercially available today. Unlike traditional storage devices, PMs can be accessed over a byte-addressable load-store interface with access latency that is comparable to DRAM. Unfortunately, existing hardware and software systems are ill-equipped to fully avail the potential of these byte-addressable memory technologies as they have been designed to access traditional sto...

AI for Computer Architecture
  • Language: en
  • Pages: 124

AI for Computer Architecture

Artificial intelligence has already enabled pivotal advances in diverse fields, yet its impact on computer architecture has only just begun. In particular, recent work has explored broader application to the design, optimization, and simulation of computer architecture. Notably, machine-learning-based strategies often surpass prior state-of-the-art analytical, heuristic, and human-expert approaches. This book reviews the application of machine learning in system-wide simulation and run-time optimization, and in many individual components such as caches/memories, branch predictors, networks-on-chip, and GPUs. The book further analyzes current practice to highlight useful design strategies and identify areas for future work, based on optimized implementation strategies, opportune extensions to existing work, and ambitious long term possibilities. Taken together, these strategies and techniques present a promising future for increasingly automated computer architecture designs.

Architectural and Operating System Support for Virtual Memory
  • Language: en
  • Pages: 168

Architectural and Operating System Support for Virtual Memory

This book provides computer engineers, academic researchers, new graduate students, and seasoned practitioners an end-to-end overview of virtual memory. We begin with a recap of foundational concepts and discuss not only state-of-the-art virtual memory hardware and software support available today, but also emerging research trends in this space. The span of topics covers processor microarchitecture, memory systems, operating system design, and memory allocation. We show how efficient virtual memory implementations hinge on careful hardware and software cooperation, and we discuss new research directions aimed at addressing emerging problems in this space. Virtual memory is a classic compute...

Robotic Computing on FPGAs
  • Language: en
  • Pages: 202

Robotic Computing on FPGAs

This book provides a thorough overview of the state-of-the-art field-programmable gate array (FPGA)-based robotic computing accelerator designs and summarizes their adopted optimized techniques. This book consists of ten chapters, delving into the details of how FPGAs have been utilized in robotic perception, localization, planning, and multi-robot collaboration tasks. In addition to individual robotic tasks, this book provides detailed descriptions of how FPGAs have been used in robotic products, including commercial autonomous vehicles and space exploration robots.

Efficient Processing of Deep Neural Networks
  • Language: en
  • Pages: 254

Efficient Processing of Deep Neural Networks

This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book i...

In-/Near-Memory Computing
  • Language: en
  • Pages: 124

In-/Near-Memory Computing

This book provides a structured introduction of the key concepts and techniques that enable in-/near-memory computing. For decades, processing-in-memory or near-memory computing has been attracting growing interest due to its potential to break the memory wall. Near-memory computing moves compute logic near the memory, and thereby reduces data movement. Recent work has also shown that certain memories can morph themselves into compute units by exploiting the physical properties of the memory cells, enabling in-situ computing in the memory array. While in- and near-memory computing can circumvent overheads related to data movement, it comes at the cost of restricted flexibility of data repres...