You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Gödel's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to Π11–CA0. Ordinal analysis and the (Schwichtenberg–Wainer) subrecursive hierarchies play a central role and are used in proving the 'modified finite Ramsey' and 'extended Kruskal' independence results for PA and Π11–CA0. Part III develops the theoretical underpinnings of the first author's proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic.
The papers collected in this volume represent the main body of research arising from the International Munich Centenary Conference in 2001, which commemorated the discovery of the famous Russell Paradox a hundred years ago. The 31 contributions and the introductory essay by the editor were (with two exceptions) all originally written for the volume. The volume serves a twofold purpose, historical and systematic. One focus is on Bertrand Russell's logic and logical philosophy, taking into account the rich sources of the Russell Archives, many of which have become available only recently. The second equally important aim is to present original research in the broad range of foundational studies that draws on both current conceptions and recent technical advances in the above-mentioned fields. The volume contributes therefore, to the well-established body of mathematical philosophy initiated to a large extent by Russell's work.
This book constitutes the refereed proceedings of the Turing Centenary Conference and the 8th Conference on Computability in Europe, CiE 2012, held in Cambridge, UK, in June 2012. The 53 revised papers presented together with 6 invited lectures were carefully reviewed and selected with an acceptance rate of under 29,8%. The CiE 2012 Turing Centenary Conference will be remembered as a historic event in the continuing development of the powerful explanatory role of computability across a wide spectrum of research areas. The papers presented at CiE 2012 represent the best of current research in the area, and forms a fitting tribute to the short but brilliant trajectory of Alan Mathison Turing. Both the conference series and the association promote the development of computability-related science, ranging over mathematics, computer science and applications in various natural and engineering sciences such as physics and biology, and also including the promotion of related non-scientific fields such as philosophy and history of computing.
This book constitutes the refereed proceedings of the International Symposium on Logical Foundations of Computer Science, LFCS 2013, held in San Diego, CA, USA in January 2013. The volume presents 29 revised refereed papers carefully selected by the program committee. The scope of the Symposium is broad and includes constructive mathematics and type theory; logic, automata and automatic structures; computability and randomness; logical foundations of programming; logical aspects of computational complexity; logic programming and constraints; automated deduction and interactive theorem proving; logical methods in protocol and program verification; logical methods in program specification and ...
This book constitutes the thoroughly refereed post-proceedings of the International Workshop of the TYPES Working Group, TYPES 2000, held in Durham, UK in December 2000. The 15 revised full papers presented were carefully reviewed and selected during two rounds of refereeing and revision. All current issues on type theory and type systems and their applications to programming, systems design, and proof theory are addressed.
This book treats bounded arithmetic and propositional proof complexity from the point of view of computational complexity. The first seven chapters include the necessary logical background for the material and are suitable for a graduate course. The result is a uniform treatment of many systems in the literature.
This superb exposition of a complex subject examines new developments in the theory and practice of computation from a mathematical perspective, with topics ranging from classical computability to complexity, from biocomputing to quantum computing. This book is suitable for researchers and graduate students in mathematics, philosophy, and computer science with a special interest in logic and foundational issues. Most useful to graduate students are the survey papers on computable analysis and biological computing. Logicians and theoretical physicists will also benefit from this book.
Logic Colloquium '02 includes articles from some of the world's preeminent logicians. The topics span all areas of mathematical logic, but with an emphasis on Computability Theory and Proof Theory. This book will be of interest to graduate students and researchers in the field of mathematical logic.
First of two volumes providing a comprehensive guide to mathematical logic.
The lecture courses in this work are derived from the SERC 'Logic for IT' Summer School and Conference on Proof Theory held at Leeds University. The contributions come from acknowledged experts and comprise expository and research articles; put together in this book they form an invaluable introduction to proof theory that is aimed at both mathematicians and computer scientists.