You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Uncertainties are pervasive in natural hazards, and it is crucial to develop robust and meaningful approaches to characterize and communicate uncertainties to inform modeling efforts. In this monograph we provide a broad, cross-disciplinary overview of issues relating to uncertainties faced in natural hazard and risk assessment. We introduce some basic tenets of uncertainty analysis, discuss issues related to communication and decision support, and offer numerous examples of analyses and modeling approaches that vary by context and scope. Contributors include scientists from across the full breath of the natural hazard scientific community, from those in real-time analysis of natural hazards...
The Early Earth: Accretion and Differentiation provides a multidisciplinary overview of the state of the art in understanding the formation and primordial evolution of the Earth. The fundamental structure of the Earth as we know it today was inherited from the initial conditions 4.56 billion years ago as a consequence of planetesimal accretion, large impacts among planetary objects, and planetary-scale differentiation. The evolution of the Earth from a molten ball of metal and magma to the tectonically active, dynamic, habitable planet that we know today is unique among the terrestrial planets, and understanding the earliest processes that led to Earth’s current state is the essence of thi...
Reliable and detailed information about the Earth’s subsurface is of crucial importance throughout the geosciences. Quantitative integration of all available geophysical and geological data helps to make Earth models more robust and reliable. The aim of this book is to summarize and synthesize the growing literature on combining various types of geophysical and other geoscientific data. The approaches that have been developed to date encompass joint inversion, cooperative inversion, and statistical post-inversion analysis methods, each with different benefits and assumptions. Starting with the foundations of inverse theory, this book systematically describes the mathematical and theoretica...
Proceedings of the 2011 Conference on Coastal Engineering Practice, held in San Diego, California, August 21-24, 2011. Sponsored by the Coasts, Oceans, Ports, and Rivers Institute of ASCE. This collection contains 90 papers that focus on developing solutions to coastal engineering problems and ensuring sustainable coastal development. Papers reflect an emphasis on practical experience and actual projects rather than specific technical and scientific aspects of coastal engineering. Topics include: case histories of coastal projects; sustainable coastal development; erosion and shoreline protection; coastal environment, water quality, and wetlands restoration; coastal hazards and risk management; coastal sediment processes; ports, harbors, and marine transportation; and local, state, and federal involvement in planning, design, and construction of coastal projects. These papers enhance the exchange of real-world experience and thus will be of interest to practicing coastal engineers.
Although bioenergy is a renewable energy source, it is not without impact on the environment. Both the cultivation of crops specifically for use as biofuels and the use of agricultural byproducts to generate energy changes the landscape, affects ecosystems, and impacts the climate. Bioenergy and Land Use Change focuses on regional and global assessments of land use change related to bioenergy and the environmental impacts. This interdisciplinary volume provides both high level reviews and in-depth analyses on specific topics. Volume highlights include: Land use change concepts, economics, and modeling Relationships between bioenergy and land use change Impacts on soil carbon, soil health, wa...
Deep Earth: Physics and Chemistry of the Lower Mantle and Core highlights recent advances and the latest views of the deep Earth from theoretical, experimental, and observational approaches and offers insight into future research directions on the deep Earth. In recent years, we have just reached a stage where we can perform measurements at the conditions of the center part of the Earth using state-of-the-art techniques, and many reports on the physical and chemical properties of the deep Earth have come out very recently. Novel theoretical models have been complementary to this breakthrough. These new inputs enable us to compare directly with results of precise geophysical and geochemical o...
Earthquakes are some of the most dynamic features of the Earth. This multidisciplinary volume presents an overview of earthquake processes and properties including the physics of dynamic faulting, fault fabric and mechanics, physical and chemical properties of fault zones, dynamic rupture processes, and numerical modeling of fault zones during seismic rupture. This volume examines questions such as: • What are the dynamic processes recorded in fault gouge? • What can we learn about rupture dynamics from laboratory experiments? • How do on-fault and off-fault properties affect seismic ruptures? • How do fault zones evolve over time? Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture is a valuable resource for scientists, researchers and students from across the geosciences interested in the earthquakes processes.
Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun’s atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered que...
The aurora is the most visible manifestation of the connection of the Earth to the space environment and has inspired awe, curiosity, and scientific inquiry for centuries. Recent advances in observing techniques and modeling and theoretical work have revealed new auroral phenomena, provided a better understanding of auroral dynamics, and have led to an enhanced capability for auroral forecasts. This monograph features discussions of: New auroral phenomena due to the ring current ion and polar rain electron precipitation Various auroral forms and hemispheric asymmetry Auroral model development and MHD simulations Application of the auroral observations for radio absorption and scintillation Aurora nowcast and forecast for space weather operations Auroral Dynamics and Space Weather is a valuable contribution for scientists, researchers, space weather operators, and students of Earth's space environment.
The Galápagos Islands are renown for their unique flora and fauna, inspiring Charles Darwin in the elaboration of his theory of evolution. Yet in his Voyage of the Beagle, published in 1839, Darwin also remarked on the fascinating geology and volcanic origin of these enchanted Islands. Since then, the Galápagos continue to provide scientists with inspiration and invaluable information about ocean island formation and evolution, mantle plumes, and the deep Earth. Motivated by an interdisciplinary Chapman Conference held in the Islands, this AGU volume provides cross-disciplinary collection of recent research into the origin and nature of ocean islands, from their deepest roots in Earth's ma...