You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This Second Edition of An Introduction to Atmospheric Radiation has been extensively revised to address the fundamental study and quantitative measurement of the interactions of solar and terrestrial radiation with molecules, aerosols, and cloud particles in planetary atmospheres. It contains 70% new material, much of it stemming from the investigation of the atmospheric greenhouse effects of external radiative perturbations in climate systems, and the development of methodologies for inferring atmospheric and surface parameters by means of remote sensing. Liou's comprehensive treatment of the fundamentals of atmospheric radiation was developed for students, academics, and researchers in atmospheric sciences, remote sensing, and climate modeling. - Balanced treatment of fundamentals and applications - Includes over 170 illustrations to complement the concise description of each subject - Numerous examples and hands-on exercises at the end of each chapter
MATLAB scripts (M-files) are provided on the accompanying CD.
Paleoseismology has become an important component of seismic risk analysis, which is mandated for nuclear power plants, dams, waste repositories, and other critical structures. This book is the first in the English language to be devoted solely to paleoseismology. It summarizes the development of the field from the 1960s to the present, encompassing material that is currently widely dispersed in journal articles. - Includes a comprehensive review of the techniques currently used in paleoseismology - Emphasizes practical methods of data collection and field studies - Covers interpretation of field data based on current theory concerning fault segmentation and recurrence cycles - Contains more than 170 line drawings and 50 photographs of paleoseismic phenomena
Gravity waves exist in all types of geophysical fluids, such as lakes, oceans, and atmospheres. They play an important role in redistributing energy at disturbances, such as mountains or seamounts and they are routinely studied in meteorology and oceanography, particularly simulation models, atmospheric weather models, turbulence, air pollution, and climate research. An Introduction to Atmospheric Gravity Waves provides readers with a working background of the fundamental physics and mathematics of gravity waves, and introduces a wide variety of applications and numerous recent advances. Nappo provides a concise volume on gravity waves with a lucid discussion of current observational techniques and instrumentation. Foreword is written by Prof. George Chimonas, a renowned expert on the interactions of gravity waves with turbulence. CD containing real data, computer codes for data analysis and linear gravity wave models included with the text
Atmospheric Science, Second Edition, is the long-awaited update of the classic atmospheric science text, which helped define the field nearly 30 years ago and has served as the cornerstone for most university curricula. Now students and professionals alike can use this updated classic to understand atmospheric phenomena in the context of the latest discoveries, and prepare themselves for more advanced study and real-life problem solving. This latest edition of Atmospheric Science, has been revamped in terms of content and appearance. It contains new chapters on atmospheric chemistry, the Earth system, the atmospheric boundary layer, and climate, as well as enhanced treatment of atmospheric d...
Please use extracts from reviews of first editionKey Features* Updated and thoroughly revised edition* additional material on geophysical/acoustic tomography* Detailed discussion of application of inverse theory to tectonic, gravitational and geomagnetic studies
Storm and Cloud Dynamics focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models. - Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and p...
MAGNETIC FIELD OF THE EARTH
An Introduction to Mining Seismology describes comprehensively the modern methods and techniques used to monitor and study seismicity and rockbursts in mines. Key case histories from various worldwide mining districts clearly illustrate and skillfully emphasize the practical aspects of mining seismology. This text is intended as a handbook for geophysicists and mining and rock mechanics engineers working at mines. It will also serve as an essential reference tool for seismologists working at research institutions on local seismicity not necessarily induced by mining. - Presents a comprehensive description of seismicity induced by mining worldwide - Provides information on optimum network planning and seismic event location procedures in deep mines - Covers a broad array of topics including focal mechanism, moment tensor, and double-couple versus non-double-couple seismic events in mines - Includes data on source parameters and scaling relations for seismic events in mines