You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In September 1997, the Working Week on Resolution of Singularities was held at Obergurgl in the Tyrolean Alps. Its objective was to manifest the state of the art in the field and to formulate major questions for future research. The four courses given during this week were written up by the speakers and make up part I of this volume. They are complemented in part II by fifteen selected contributions on specific topics and resolution theories. The volume is intended to provide a broad and accessible introduction to resolution of singularities leading the reader directly to concrete research problems.
This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.
This two volume work on "Positivity in Algebraic Geometry" contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Whereas Volume I is more elementary, the present Volume II is more at the research level and somewhat more specialized. Both volumes are also available as hardcover edition as Vols. 48 and 49 in the series "Ergebnisse der Mathematik und ihrer Grenzgebiete".
This volume is devoted to a beautiful object, called the valuative tree and designed as a powerful tool for the study of singularities in two complex dimensions. Its intricate yet manageable structure can be analyzed by both algebraic and geometric means. Many types of singularities, including those of curves, ideals, and plurisubharmonic functions, can be encoded in terms of positive measures on the valuative tree. The construction of these measures uses a natural tree Laplace operator of independent interest.
This book contains papers given at the International Singularity Conference held in 1991 at Lille.
Commutative algebra is a rapidly growing subject that is developing in many different directions. This volume presents several of the most recent results from various areas related to both Noetherian and non-Noetherian commutative algebra. This volume contains a collection of invited survey articles by some of the leading experts in the field. The authors of these chapters have been carefully selected for their important contributions to an area of commutative-algebraic research. Some topics presented in the volume include: generalizations of cyclic modules, zero divisor graphs, class semigroups, forcing algebras, syzygy bundles, tight closure, Gorenstein dimensions, tensor products of algebras over fields, as well as many others. This book is intended for researchers and graduate students interested in studying the many topics related to commutative algebra.
This volume contains the proceedings of the Workshop on Lie Algebras, in honor of Helmut Strade's 70th Birthday, held from May 22-24, 2013, at the Università degli Studi di Milano-Bicocca, Milano, Italy. Lie algebras are at the core of several areas of mathematics, such as, Lie groups, algebraic groups, quantum groups, representation theory, homogeneous spaces, integrable systems, and algebraic topology. The first part of this volume combines research papers with survey papers by the invited speakers. The second part consists of several collections of problems on modular Lie algebras, their representations, and the conjugacy of their nilpotent elements as well as the Koszulity of (restricted) Lie algebras and Lie properties of group algebras or restricted universal enveloping algebras.
This book is the first of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). Valuation theory arose in the early part of the twentieth century in connection with number theory and has many important applications to geometry and analysis: the classical application to the study of algebraic curves and to Dedekind and Prufer domains; the close connection to the famousresolution of the singularities problem; the study of the absolute Galois group of a field; the connection between ordering, valuations, and quadratic forms over a formally real field; the application to real algebraic geometry; the study of noncommutative rings; etc. The special feature of this book isits focus on current applications of valuation theory to this broad range of topics. Also included is a paper on the history of valuation theory. The book is suitable for graduate students and research mathematicians working in algebra, algebraic geometry, number theory, and mathematical logic.
In this graduate-level book, leading researchers explore various new notions of 'space' in mathematical physics.
This volume contains the proceedings of the CATS4 Conference on Higher Categorical Structures and their Interactions with Algebraic Geometry, Algebraic Topology and Algebra, held from July 2-7, 2012, at CIRM in Luminy, France. Over the past several years, the CATS conference series has brought together top level researchers from around the world interested in relative and higher category theory and its applications to classical mathematical domains. Included in this volume is a collection of articles covering the applications of categories and stacks to geometry, topology and algebra. Techniques such as localization, model categories, simplicial objects, sheaves of categories, mapping stacks, dg structures, hereditary categories, and derived stacks, are applied to give new insight on cluster algebra, Lagrangians, trace theories, loop spaces, structured surfaces, stability, ind-coherent complexes and 1-affineness showing up in geometric Langlands, branching out to many related topics along the way.