You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book brings together international research on school teachers’, and university lecturers’ uses of digital technology to enhance teaching and learning in mathematics. It includes contributions that address theoretical, methodological, and practical challenges for the field with the research lens trained on the perspectives of teachers and teaching. As countries around the world move to integrate digital technologies in classrooms, this book collates research perspectives and experiences that offer valuable insights, in particular concerning the trajectories of development of teachers’ digital skills, knowledge and classroom practices. Via app: download the SN More Media app for free, scan a link with play button and access the videos directly on your smartphone or tablet.
This book, the outcome of a conference organised in 2012 in Paris as a homage to Michèle Artigue, is based on the main component of this event. However, it offers more than a mere reflection of the conference in itself, as various well-known researchers from the field have been invited to summarize the main topics where the importance of Artigue’s contribution is unquestionable. Her multiple interest areas, as a researcher involved in a wider community, give to this volume its unique flavour of diversity. Michèle Artigue (ICMI 2013 Felix Klein Award, CIAEM 2015 Luis Santaló Award) is without doubt one of the most influential researchers nowadays in the field of didactics of mathematics. This influence rests both on the quality of her research and on her constant contribution, since the early 1970s, to the development of the teaching and learning of mathematics. Observing her exemplary professional history, one can witness the emergence, the development, and the main issues of didactics of mathematics as a specific research field.
Didactics of Mathematics as a Scientific Discipline describes the state of the art in a new branch of science. Starting from a general perspective on the didactics of mathematics, the 30 original contributions to the book, drawn from 10 different countries, go on to identify certain subdisciplines and suggest an overall structure or `topology' of the field. The book is divided into eight sections: (1) Preparing Mathematics for Students; (2) Teacher Education and Research on Teaching; (3) Interaction in the Classroom; (4) Technology and Mathematics Education; (5) Psychology of Mathematical Thinking; (6) Differential Didactics; (7) History and Epistemology of Mathematics and Mathematics Educat...
Developing Research in Mathematics Education is the first book in the series New Perspectives on Research in Mathematics Education, to be produced in association with the prestigious European Society for Research in Mathematics Education. This inaugural volume sets out broad advances in research in mathematics education which have accumulated over the last 20 years through the sustained exchange of ideas and collaboration between researchers in the field. An impressive range of contributors provide specifically European and complementary global perspectives on major areas of research in the field on topics that include: the content domains of arithmetic, geometry, algebra, statistics, and pr...
How can we deal with the diversity of theories in mathematics education? This was the main question that led the authors of this book to found the Networking Theories Group. Starting from the shared assumption that the existence of different theories is a resource for mathematics education research, the authors have explored the possibilities of interactions between theories, such as contrasting, coordinating, and locally integrating them. The book explains and illustrates what it means to network theories; it presents networking as a challenging but fruitful research practice and shows how the Group dealt with this challenge considering five theoretical approaches, namely the approach of Ac...
Testing matters! It can determine kids' and schools' futures. In a conference at the Mathematical Sciences Research Institute, mathematicians, maths education researchers, teachers, test developers, and policymakers gathered to work through critical issues related to mathematics assessment. They examined: the challenges of assessing student learning in ways that support instructional improvement; ethical issues related to assessment, including the impact of testing on urban and high-poverty schools; the different (and sometimes conflicting) needs of the different groups; and different frameworks, tools, and methods for assessment, comparing the kinds of information they offer about students' mathematical proficiency. This volume presents the results of the discussions. It highlights the kinds of information that different assessments can offer, including many examples of some of the best mathematics assessments worldwide. A special feature is an interview with a student about his knowledge of fractions and a demonstration of what interviews (versus standardized tests) can reveal.
This volume documents a range of qualitative research approaches emerged within mathematics education over the last three decades, whilst at the same time revealing their underlying methodologies. Continuing the discussion as begun in the two 2003 ZDM issues dedicated to qualitative empirical methods, this book presents astate of the art overview on qualitative research in mathematics education and beyond. The structure of the book allows the reader to use it as an actual guide for the selection of an appropriate methodology, on a basis of both theoretical depth and practical implications. The methods and examples illustrate how different methodologies come to life when applied to a specific question in a specific context. Many of the methodologies described are also applicable outside mathematics education, but the examples provided are chosen so as to situate the approach in a mathematical context.
The book aims at showing the state-of-the-art in the field of modeling and applications in mathematics education. This is the first volume to do this. The book deals with the question of how key competencies of applications and modeling at the heart of mathematical literacy may be developed; with the roles that applications and modeling may play in mathematics teaching, making mathematics more relevant for students.
Ten sets of disciplinary scholars respond to an orienting essay that raises questions about the history of discourse about teaching and learning in the disciplines, the ways in which disciplinary "styles" influence inquiry into teaching and learning, and the nature and roles of interdisciplinary exchange. The authors hope to "contribute to a common language for trading ideas, enlarging our pedagogical imaginations, and strengthening our scholarly work." Disciplines represented: chemistry; communication studies, engineering, English studies, history, management sciences, mathematics, psychology, and sociology. A collaboration of The Carnegie Foundation for the Advancement of Teaching and AAHE