You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Here, the authors present modern mathematical methods to solve problems of differential-operator inclusions and evolution variation inequalities which may occur in fields such as geophysics, aerohydrodynamics, or fluid dynamics. For the first time, they describe the detailed generalization of various approaches to the analysis of fundamentally nonlinear models and provide a toolbox of mathematical equations. These new mathematical methods can be applied to a broad spectrum of problems. Examples of these are phase changes, diffusion of electromagnetic, acoustic, vibro-, hydro- and seismoacoustic waves, or quantum mechanical effects. This is the second of two volumes dealing with the subject.
This monograph is dedicated to the systematic presentation of main trends, technologies and methods of computational intelligence (CI). The book pays big attention to novel important CI technology- fuzzy logic (FL) systems and fuzzy neural networks (FNN). Different FNN including new class of FNN- cascade neo-fuzzy neural networks are considered and their training algorithms are described and analyzed. The applications of FNN to the forecast in macroeconomics and at stock markets are examined. The book presents the problem of portfolio optimization under uncertainty, the novel theory of fuzzy portfolio optimization free of drawbacks of classical model of Markovitz as well as an application fo...
Modern achievements in the intensively developing field of applied mathematics are presented in this monograph. In particular, it proposes a new approach to extremal problem theory for nonlinear operators, differential-operator equations and inclusions, and for variational inequalities in Banach spaces. An axiomatic study of nonlinear maps (including multi-valued ones) is given, and the properties of resolving operators for systems, consisting of operator and differential-operator equations, are stated in nonlinear-map terms. The solvability conditions and the properties of extremal problem solutions are obtained, while their weak expansions and necessary conditions of optimality in variational inequality form are formulated. In addition. the monograph proposes regularization methods and approximation schemes. This book is adressed to scientists, graduates and undergraduates who are interested in nonlinear analysis, control theory, system analysis and differential equations.
As in the previous volume on the topic, the authors close the gap between abstract mathematical approaches, such as applied methods of modern algebra and analysis, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems, on the one hand and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. Readers will also benefit from the presentation of modern mathematical modeling methods for the numerical solution of complicated engineering problems in biochemistry, geophysics, biology and climatology. This compilation will be of interest to mathematicians and engineers working at the interface of these fields. It presents selected works of the joint seminar series of Lomonosov Moscow State University and the Institute for Applied System Analysis at National Technical University of Ukraine “Kyiv Polytechnic Institute”. The authors come from Brazil, Germany, France, Mexico, Spain, Poland, Russia, Ukraine and the USA.
In this sequel to two earlier volumes, the authors now focus on the long-time behavior of evolution inclusions, based on the theory of extremal solutions to differential-operator problems. This approach is used to solve problems in climate research, geophysics, aerohydrodynamics, chemical kinetics or fluid dynamics. As in the previous volumes, the authors present a toolbox of mathematical equations. The book is based on seminars and lecture courses on multi-valued and non-linear analysis and their geophysical application.
In this volume, the authors close the gap between abstract mathematical approaches, such as abstract algebra, number theory, nonlinear functional analysis, partial differential equations, methods of nonlinear and multi-valued analysis, on the one hand, and practical applications in nonlinear mechanics, decision making theory and control theory on the other. Readers will also benefit from the presentation of modern mathematical modeling methods for the numerical solution of complicated engineering problems in hydromechanics, geophysics and mechanics of continua. This compilation will be of interest to mathematicians and engineers working at the interface of these field. It presents selected works of the open seminar series of Lomonosov Moscow State University and the National Technical University of Ukraine “Kyiv Polytechnic Institute”. The authors come from Germany, Italy, Spain, Russia, Ukraine, and the USA.
Here, the authors present modern mathematical methods to solve problems of differential-operator inclusions and evolution variation inequalities which may occur in fields such as geophysics, aerohydrodynamics, or fluid dynamics. For the first time, they describe the detailed generalization of various approaches to the analysis of fundamentally nonlinear models and provide a toolbox of mathematical equations. These new mathematical methods can be applied to a broad spectrum of problems. Examples of these are phase changes, diffusion of electromagnetic, acoustic, vibro-, hydro- and seismoacoustic waves, or quantum mechanical effects. This is the first of two volumes dealing with the subject.
In this book international expert authors provide solutions for modern fundamental problems including the complexity of computing of critical points for set-valued mappings, the behaviour of solutions of ordinary differential equations, partial differential equations and difference equations, or the development of an abstract theory of global attractors for multi-valued impulsive dynamical systems. These abstract mathematical approaches are applied to problem-solving in solid mechanics, hydro- and aerodynamics, optimization, decision making theory and control theory. This volume is therefore relevant to mathematicians as well as engineers working at the interface of these fields.
This book focuses on the latest approaches and methods in fundamental mathematics and mechanics, and discusses the practical application of abstract mathematical approaches, such as differential geometry, and differential and difference equations in solid mechanics, hydrodynamics, aerodynamics, optimization, decision-making theory and control theory. Featuring selected contributions to the open seminar series of Lomonosov Moscow State University and Igor Sikorsky Kyiv Polytechnic Institute by mathematicians from China, Germany, France, Italy, Spain, Russia, Ukraine and the USA, the book will appeal to mathematicians and engineers working at the interface of these fields
The book focuses on the next fields of computer science: combinatorial optimization, scheduling theory, decision theory, and computer-aided production management systems. It also offers a quick introduction into the theory of PSC-algorithms, which are a new class of efficient methods for intractable problems of combinatorial optimization. A PSC-algorithm is an algorithm which includes: sufficient conditions of a feasible solution optimality for which their checking can be implemented only at the stage of a feasible solution construction, and this construction is carried out by a polynomial algorithm (the first polynomial component of the PSC-algorithm); an approximation algorithm with polyno...