You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Inverse problems lie at the heart of contemporary scientific inquiry and technological development. Applications include a variety of medical and other imaging techniques, which are used for early detection of cancer and pulmonary edema, location of oil and mineral deposits in the Earth's interior, creation of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, model identification in growth processes, and modeling in the life sciences among others. The expository survey essays in this book describe recent developments in inverse problems and imaging, including hybrid or couple-physics methods arising in medical imaging, Calderon's problem and electrical impedance tomography, inverse problems arising in global seismology and oil exploration, inverse spectral problems, and the study of asymptotically hyperbolic spaces. It is suitable for graduate students and researchers interested in inverse problems and their applications.
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
This volume contains the proceedings of two conferences on Inverse Problems and Applications, held in 2012, to celebrate the work of Gunther Uhlmann. The first conference was held at the University of California, Irvine, from June 18-22, 2012, and the second was held at Zhejiang University, Hangzhou, China, from September 17-21, 2012. The topics covered include inverse problems in medical imaging, scattering theory, geometry and image processing, and the mathematical theory of cloaking, as well as methods related to inverse problems.
Microlocal Analysis has proven to be a powerful tool for analyzing and solving inverse problems; including answering questions about stability, uniqueness, recovery of singularities, etc. This volume, presents several studies on microlocal methods in problems in tomography, integral geometry, geodesic transforms, travel time tomography, thermoacoustic tomography, Compton CT, cosmology, nonlinear inverse problems, and others.
This textbook provides a modern introduction to advanced concepts and methods of mathematical analysis. The first three parts of the book cover functional analysis, harmonic analysis, and microlocal analysis. Each chapter is designed to provide readers with a solid understanding of fundamental concepts while guiding them through detailed proofs of significant theorems. These include the universal approximation property for artificial neural networks, Brouwer's domain invariance theorem, Nash's implicit function theorem, Calderón's reconstruction formula and wavelets, Wiener's Tauberian theorem, Hörmander's theorem of propagation of singularities, and proofs of many inequalities centered ar...
As the title of the book indicates, this is primarily a book on partial differential equations (PDEs) with two definite slants: toward inverse problems and to the inclusion of fractional derivatives. The standard paradigm, or direct problem, is to take a PDE, including all coefficients and initial/boundary conditions, and to determine the solution. The inverse problem reverses this approach asking what information about coefficients of the model can be obtained from partial information on the solution. Answering this question requires knowledge of the underlying physical model, including the exact dependence on material parameters. The last feature of the approach taken by the authors is the...
"This book explains how to modify and cue exercises based on an athlete's different joint angles, bone lengths, and overall structure. The authors explain the ways unique bodies manage various exercises, citing evidence from multiple sources, and how to best take advantage of a given set of levers in order to optimize those movements"--
How much data does Facebook really have on me? What is a cookie on the Internet? Is my Amazon Alexa listening to me? Why can’t I seem to stop scrolling endlessly down my Instagram feed? Did social media really help cause an attempted coup in the United States? How did we go from short, 140-character tweets to attempted coups in less than two decades? How much data does Facebook really have on me? Is my Amazon Alexa listening to me? The Little Black Book of Data and Democracy demystifies these seemingly complex topics to help you understand how our very way of life is under threat and what you can do about it before it’s too late. Powered by your personal data, social media has transforme...
This volume contains the proceedings of two AMS Special Sessions “Recent Developments on Analysis and Computation for Inverse Problems for PDEs,” virtually held on March 13–14, 2021, and “Recent Advances in Inverse Problems for Partial Differential Equations,” virtually held on October 23–24, 2021. The papers in this volume focus on new results on numerical methods for various inverse problems arising in electrical impedance tomography, inverse scattering in radar and optics problems, reconstruction of initial conditions, control of acoustic fields, and stock price forecasting. The authors studied iterative and non-iterative approaches such as optimization-based, globally convergent, sampling, and machine learning-based methods. The volume provides an interesting source on advances in computational inverse problems for partial differential equations.
Physical Strength Can Only Take You So Far Reigning CrossFit World Champion Rich Froning is “The Fittest Man on Earth.” He’s fast. He’s strong. And he’s incredibly disciplined. But it takes more than physical strength to compete and win at an elite level. It takes incredible mental and spiritual toughness as well. And it is the precise balance of all three that makes Rich Froning a champion. In First, readers come alongside Rich as he trains for and competes in back-to-back-to-back CrossFit World Championships. Along the way, Rich shares invaluable training tips, motivational techniques, and spiritual insights that, in keeping with the CrossFit philosophy, will prepare you to respond to any real-life physical, mental and spiritual challenge.