You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
We have come to know that our ability to survive and grow as a nation to a very large degree depends upon our scientific progress. Moreover, it is not enough simply to keep abreast of the rest of the world in scientific matters. 1 We must maintain our leadership. President Harry Truman spoke those words in 1950, in the aftermath of World War II and in the midst of the Cold War. Indeed, the scientific and engineering leadership of the United States and its allies in the twentieth century played key roles in the successful outcomes of both World War II and the Cold War, sparing the world the twin horrors of fascism and totalitarian communism, and fueling the economic prosperity that followed. Today, as the United States and its allies once again find themselves at war, President Truman’s words ring as true as they did a half-century ago. The goal set out in the Truman Administration of maintaining leadership in science has remained the policy of the U.S. Government to this day: Dr. John Marburger, the Director of the Office of Science and Technology (OSTP) in the Executive Office of the President made remarks to that effect during his confirmation hearings in October 2 2001.
Faculties, publications and doctoral theses in departments or divisions of chemistry, chemical engineering, biochemistry and pharmaceutical and/or medicinal chemistry at universities in the United States and Canada.
The entire scope of the BioMEMS field-at your fingertipsHelping to educate the new generation of engineers and biologists, Introduction to BioMEMS explains how certain problems in biology and medicine benefit from and often require the miniaturization of devices. The book covers the whole breadth of this dynamic field, including classical microfabr
During an interval of 15 years, the Lucille P. Markey Charitable Trust spent over $500 million on four programs in the basic biomedical sciences that support the education and research of graduate students, postdoctoral fellows, junior faculty, and senior researchers. The Markey Trust asked the NRC to evaluate these programs with two questions in mind: "Were these funds well spent?" and "What can others in the biomedical and philanthropic communities learn from the programs of the Markey Trust, both as an approach to funding biomedical research and as a model of philanthropy?" One of five resulting reports, this volume contains the proceedings of a workshop held in June 2005 to investigate methods used to evaluate funding of the biomedical scientists by philanthropic and public funders. In addition to the Markey Trust, representatives from the Howard Hughes Medical Institute, the American Heart Association, the Doris Duke Charitable Foundation, the National Institutes of Health, and six other funders of biomedical scientists presented information on evaluation methodologies and outcomes.
with contributions by numerous experts
This review volume explores how the current knowledge of the biological structures occuring on the surface of moth eyes, leaves, sharkskin, and the feet of reptiles can be transferred to functional technological materials.
It is now widely accepted that much of the dynamic function of cells and tissues is regulated from outside the cell by the extracellular matrix. In ad- tion to its conventional role in providing a scaffold for building tissues, the extracellular matrix acts as a directional highway for cellular movement and provides instructional information for promoting survival, proliferation, and differentiation. Indeed, the extracellular matrix is beginning to take a starring role in the choreography of cell and tissue function. The diverse roles of the extracellular matrix are reflected in its highly complicated structure, consisting of an ever increasing number of components. Yet the mechanisms of ext...
This volume explores the interactions between organisms and their environments and how this “entanglement” is a fundamental aspect of all life. It brings together the work and ideas of historians, philosophers, biologists, and social scientists, uniting a range of new perspectives, methods, and frameworks for examining and understanding the ways that organisms and environments interact. The volume is organized into three main sections: historical perspectives, contested models, and emerging frameworks. The first section explores the origins of the modern idea of organism-environment interaction in the mid-nineteenth century and its development by later psychologists and anthropologists. ...
Last November, the National Academies Keck Futures Initiative held the Designing Nanostructures at the Interface Between Biomedical and Physical Systems conference at which researchers from science, engineering and medicine discussed recent developments in nanotechnology, directions for future research, and possible biomedical applications. The centerpiece of the conference was breakout sessions in which ten focus groups of researchers from different fields spent eight hours developing research plans to solve various problems in the field of nanotechnology. Among the challenges were: Building a nanosystem that can isolate, sequence and identify RNA or DNA Developing a system to detect diseas...