Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

The Minimum Description Length Principle
  • Language: en
  • Pages: 736

The Minimum Description Length Principle

  • Type: Book
  • -
  • Published: 2007
  • -
  • Publisher: MIT Press

This introduction to the MDL Principle provides a reference accessible to graduate students and researchers in statistics, pattern classification, machine learning, and data mining, to philosophers interested in the foundations of statistics, and to researchers in other applied sciences that involve model selection.

Advances in Minimum Description Length
  • Language: en
  • Pages: 464

Advances in Minimum Description Length

  • Type: Book
  • -
  • Published: 2005
  • -
  • Publisher: MIT Press

A source book for state-of-the-art MDL, including an extensive tutorial and recent theoretical advances and practical applications in fields ranging from bioinformatics to psychology.

Information Theory and Statistics
  • Language: en
  • Pages: 128

Information Theory and Statistics

Information Theory and Statistics: A Tutorial is concerned with applications of information theory concepts in statistics, in the finite alphabet setting. The topics covered include large deviations, hypothesis testing, maximum likelihood estimation in exponential families, analysis of contingency tables, and iterative algorithms with an "information geometry" background. Also, an introduction is provided to the theory of universal coding, and to statistical inference via the minimum description length principle motivated by that theory. The tutorial does not assume the reader has an in-depth knowledge of Information Theory or statistics. As such, Information Theory and Statistics: A Tutorial, is an excellent introductory text to this highly-important topic in mathematics, computer science and electrical engineering. It provides both students and researchers with an invaluable resource to quickly get up to speed in the field.

Information and Complexity in Statistical Modeling
  • Language: en
  • Pages: 145

Information and Complexity in Statistical Modeling

No statistical model is "true" or "false," "right" or "wrong"; the models just have varying performance, which can be assessed. The main theme in this book is to teach modeling based on the principle that the objective is to extract the information from data that can be learned with suggested classes of probability models. The intuitive and fundamental concepts of complexity, learnable information, and noise are formalized, which provides a firm information theoretic foundation for statistical modeling. Although the prerequisites include only basic probability calculus and statistics, a moderate level of mathematical proficiency would be beneficial.

An Introduction to Kolmogorov Complexity and Its Applications
  • Language: en
  • Pages: 655

An Introduction to Kolmogorov Complexity and Its Applications

Briefly, we review the basic elements of computability theory and prob ability theory that are required. Finally, in order to place the subject in the appropriate historical and conceptual context we trace the main roots of Kolmogorov complexity. This way the stage is set for Chapters 2 and 3, where we introduce the notion of optimal effective descriptions of objects. The length of such a description (or the number of bits of information in it) is its Kolmogorov complexity. We treat all aspects of the elementary mathematical theory of Kolmogorov complexity. This body of knowledge may be called algo rithmic complexity theory. The theory of Martin-Lof tests for random ness of finite objects an...

Learning with the Minimum Description Length Principle
  • Language: en
  • Pages: 352

Learning with the Minimum Description Length Principle

This book introduces readers to the minimum description length (MDL) principle and its applications in learning. The MDL is a fundamental principle for inductive inference, which is used in many applications including statistical modeling, pattern recognition and machine learning. At its core, the MDL is based on the premise that “the shortest code length leads to the best strategy for learning anything from data.” The MDL provides a broad and unifying view of statistical inferences such as estimation, prediction and testing and, of course, machine learning. The content covers the theoretical foundations of the MDL and broad practical areas such as detecting changes and anomalies, problems involving latent variable models, and high dimensional statistical inference, among others. The book offers an easy-to-follow guide to the MDL principle, together with other information criteria, explaining the differences between their standpoints. Written in a systematic, concise and comprehensive style, this book is suitable for researchers and graduate students of machine learning, statistics, information theory and computer science.

Elements of Information Theory
  • Language: en
  • Pages: 788

Elements of Information Theory

The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.

Statistical and Inductive Inference by Minimum Message Length
  • Language: en
  • Pages: 456

Statistical and Inductive Inference by Minimum Message Length

The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical applic...

Stochastic Complexity In Statistical Inquiry
  • Language: en
  • Pages: 191

Stochastic Complexity In Statistical Inquiry

This book describes how model selection and statistical inference can be founded on the shortest code length for the observed data, called the stochastic complexity. This generalization of the algorithmic complexity not only offers an objective view of statistics, where no prejudiced assumptions of 'true' data generating distributions are needed, but it also in one stroke leads to calculable expressions in a range of situations of practical interest and links very closely with mainstream statistical theory. The search for the smallest stochastic complexity extends the classical maximum likelihood technique to a new global one, in which models can be compared regardless of their numbers of parameters. The result is a natural and far reaching extension of the traditional theory of estimation, where the Fisher information is replaced by the stochastic complexity and the Cramer-Rao inequality by an extension of the Shannon-Kullback inequality. Ideas are illustrated with applications from parametric and non-parametric regression, density and spectrum estimation, time series, hypothesis testing, contingency tables, and data compression.

Information Theory
  • Language: en
  • Pages: 465

Information Theory

  • Type: Book
  • -
  • Published: 2014-07-10
  • -
  • Publisher: Elsevier

Information Theory: Coding Theorems for Discrete Memoryless Systems presents mathematical models that involve independent random variables with finite range. This three-chapter text specifically describes the characteristic phenomena of information theory. Chapter 1 deals with information measures in simple coding problems, with emphasis on some formal properties of Shannon's information and the non-block source coding. Chapter 2 describes the properties and practical aspects of the two-terminal systems. This chapter also examines the noisy channel coding problem, the computation of channel capacity, and the arbitrarily varying channels. Chapter 3 looks into the theory and practicality of multi-terminal systems. This book is intended primarily for graduate students and research workers in mathematics, electrical engineering, and computer science.