You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is dedicated to the new two-dimensional one-atomic-layer-thick materials such as graphene, metallic chalcogenides, silicene and other 2D materials. The book describes their main physical properties and applications in nanoelctronics, photonics, sensing and computing. A large part of the book deals with graphene and its amazing physical properties. Another important part of the book deals with semiconductor monolayers such as MoS2 with impressive applications in photonics, and electronics. Silicene and germanene are the atom-thick counterparts of silicon and germanium with impressive applications in electronics and photonics which are still unexplored. Consideration of two-dimensional electron gas devices conclude the treatment. The physics of 2DEG is explained in detail and the applications in THz and IR region are discussed. Both authors are working currently on these 2D materials developing theory and applications.
Optoelectronics will undoubtedly playamajor role in the applied sciences of the next century. This is due to the fact that optoelectronics holds the key to future communication developments which require high data transmission rates and of a extremely large bandwidths. For example, an optical fiber having a diameter few micrometers has a bandwidth of 50 THz, where an impressive number of channels having high bit data rates can be simultaneously propagated. At present, optical data streams of 100 Gb/s are being tested for use in the near future. Optoelectronics has advanced considerably in the last few years. This is due to the fact that major developments in the area of semiconductors, such ...
This book presents the achievements in bionanoelectronics in a coherent manner. It deals with nanodevices applied to biostructures, molecular motors, molecular pumps, molecular nanoactuators and electronic biodevices, including nanodevices for sensing and imaging biomolcules. The book describes bionanoelectronics, detection of biomolecules and targets various biological applications such as detection and sequencing of DNA and early detection of various deseases and nanomedicine. Further important topics of the book are biomimetics and bioinspired electronics.The book also deals with biomolecules as building blocks of nanodevices for nanoelectronics or future computing architecture The application of scanning probe techniques to biological samples is described.
Gives a comprehensive and coherent account of the basic methods to characterize a solid through its interaction with an electromagnetic field.
Carbon Nanotubes and Graphene is a timely second edition of the original Science and Technology of Carbon Nanotubes. Updated to include expanded coverage of the preparation, purification, structural characterization, and common application areas of single- and multi-walled CNT structures, this work compares, contrasts, and, where appropriate, unitizes CNT to graphene. This much expanded second edition reference supports knowledge discovery, production of impactful carbon research, encourages transition between research fields, and aids the formation of emergent applications. New chapters encompass recent developments in the theoretical treatments of electronic and vibrational structures, and...
This book explores emerging topics in atomic- and nano-scale electronics after the era of Moore’s Law, covering both the physical principles behind, and technological implementations for many devices that are now expected to become key elements of the future of nanoelectronics beyond traditional complementary metal-oxide semiconductors (CMOS). Moore’s law is not a physical law itself, but rather a visionary prediction that has worked well for more than 50 years but is rapidly coming to its end as the gate length of CMOS transistors approaches the length-scale of only a few atoms. Thus, the key question here is: “What is the future for nanoelectronics beyond CMOS?” The possible answers are found in this book. Introducing novel quantum devices such as atomic–scale electronic devices, ballistic devices, memristors, superconducting devices, this book also presents the reader with the physical principles underlying new ways of computing, as well as their practical implementation. Topics such as quantum computing, neuromorphic computing are highlighted here as some of the most promising candidates for ushering in a new era of atomic-scale electronics beyond CMOS.
Puts the emphasis on conceptual questions: Why is there no such thing as absolute motion? What is the physical meaning of relativity of simultaneity? But, the most important question that is addressed in this book is "what is the nature of spacetime?" or, equivalently, "what is the dimensionality of the world at the macroscopic level?" Develops answers to these questions via a thorough analysis of relativistic effects and explicitly asking whether the objects involved in those effects are three-dimensional or four-dimensional. Discusses the implication of the result (this analysis clearly shows that if the world and the physical objects were three-dimensional, none of the kinematic relativistic effects and the experimental evidence supporting them would be possible) for physics, philosophy, and our entire world view are discussed.
The chips in present-day cell phones already contain billions of sub-100-nanometer transistors. By 2020, however, we will see systems-on-chips with trillions of 10-nanometer transistors. But this will be the end of the miniaturization, because yet smaller transistors, containing just a few control atoms, are subject to statistical fluctuations and thus no longer useful. We also need to worry about a potential energy crisis, because in less than five years from now, with current chip technology, the internet alone would consume the total global electrical power! This book presents a new, sustainable roadmap towards ultra-low-energy (femto-Joule), high-performance electronics. The focus is on ...
This book addresses key conceptual issues relating to the modern scientific and engineering use of computer simulations. It analyses a broad set of questions, from the nature of computer simulations to their epistemological power, including the many scientific, social and ethics implications of using computer simulations. The book is written in an easily accessible narrative, one that weaves together philosophical questions and scientific technicalities. It will thus appeal equally to all academic scientists, engineers, and researchers in industry interested in questions (and conceivable answers) related to the general practice of computer simulations.
Infromation and Its Role in Nature presents an in-depth interdisciplinary discussion of the concept of information and its role in the control of natural processes. After a brief review of classical and quantum information theory, the author addresses numerous central questions, including: Is information reducible to the laws of physics and chemistry? Does the Universe, in its evolution, constantly generate new information? Or are information and information-processing exclusive attributes of living systems, related to the very definition of life? If so, what is the role of information in classical and quantum physics? In what ways does information-processing in the human brain bring about self-consciousness? Accessible to graduate students and professionals from all scientific disciplines, this stimulating book will help to shed light on many controversial issues at the heart of modern science.