Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Current Developments in Algebraic Geometry
  • Language: en

Current Developments in Algebraic Geometry

Algebraic geometry is one of the most diverse fields of research in mathematics. It has had an incredible evolution over the past century, with new subfields constantly branching off and spectacular progress in certain directions, and at the same time, with many fundamental unsolved problems still to be tackled. In the spring of 2009 the first main workshop of the MSRI algebraic geometry program served as an introductory panorama of current progress in the field, addressed to both beginners and experts. This volume reflects that spirit, offering expository overviews of the state of the art in many areas of algebraic geometry. Prerequisites are kept to a minimum, making the book accessible to a broad range of mathematicians. Many chapters present approaches to long-standing open problems by means of modern techniques currently under development and contain questions and conjectures to help spur future research.

Analytic and Algebraic Geometry
  • Language: en
  • Pages: 601

Analytic and Algebraic Geometry

"Analytic and algebraic geometers often study the same geometric structures but bring different methods to bear on them. While this dual approach has been spectacularly successful at solving problems, the language differences between algebra and analysis also represent a difficulty for students and researchers in geometry, particularly complex geometry. The PCMI program was designed to partially address this language gulf, by presenting some of the active developments in algebraic and analytic geometry in a form suitable for students on the 'other side' of the analysis-algebra language divide. One focal point of the summer school was multiplier ideals, a subject of wide current interest in both subjects. The present volume is based on a series of lectures at the PCMI summer school on analytic and algebraic geometry. The series is designed to give a high-level introduction to the advanced techniques behind some recent developments in algebraic and analytic geometry. The lectures contain many illustrative examples, detailed computations, and new perspectives on the topics presented, in order to enhance access of this material to non-specialists."--Publisher's description.

Commutative Algebra
  • Language: en
  • Pages: 898

Commutative Algebra

This contributed volume is a follow-up to the 2013 volume of the same title, published in honor of noted Algebraist David Eisenbud's 65th birthday. It brings together the highest quality expository papers written by leaders and talented junior mathematicians in the field of Commutative Algebra. Contributions cover a very wide range of topics, including core areas in Commutative Algebra and also relations to Algebraic Geometry, Category Theory, Combinatorics, Computational Algebra, Homological Algebra, Hyperplane Arrangements, and Non-commutative Algebra. The book aims to showcase the area and aid junior mathematicians and researchers who are new to the field in broadening their background and gaining a deeper understanding of the current research in this area. Exciting developments are surveyed and many open problems are discussed with the aspiration to inspire the readers and foster further research.

Geometry at the Frontier: Symmetries and Moduli Spaces of Algebraic Varieties
  • Language: en
  • Pages: 282

Geometry at the Frontier: Symmetries and Moduli Spaces of Algebraic Varieties

Articles in this volume are based on lectures given at three conferences on Geometry at the Frontier, held at the Universidad de la Frontera, Pucón, Chile in 2016, 2017, and 2018. The papers cover recent developments on the theory of algebraic varieties—in particular, of their automorphism groups and moduli spaces. They will be of interest to anyone working in the area, as well as young mathematicians and students interested in complex and algebraic geometry.

Combinatorial Algebraic Geometry
  • Language: en
  • Pages: 391

Combinatorial Algebraic Geometry

  • Type: Book
  • -
  • Published: 2017-11-17
  • -
  • Publisher: Springer

This volume consolidates selected articles from the 2016 Apprenticeship Program at the Fields Institute, part of the larger program on Combinatorial Algebraic Geometry that ran from July through December of 2016. Written primarily by junior mathematicians, the articles cover a range of topics in combinatorial algebraic geometry including curves, surfaces, Grassmannians, convexity, abelian varieties, and moduli spaces. This book bridges the gap between graduate courses and cutting-edge research by connecting historical sources, computation, explicit examples, and new results.

Local Cohomology and Its Applications
  • Language: en
  • Pages: 366

Local Cohomology and Its Applications

  • Type: Book
  • -
  • Published: 2001-10-18
  • -
  • Publisher: CRC Press

This volume collects presentations from the international workshop on local cohomology held in Guanajuato, Mexico, including expanded lecture notes of two minicourses on applications in equivariant topology and foundations of duality theory, and chapters on finiteness properties, D-modules, monomial ideals, combinatorial analysis, and related topics. Featuring selected papers from renowned experts around the world, Local Cohomology and Its Applications is a provocative reference for algebraists, topologists, and upper-level undergraduate and graduate students in these disciplines.

Existence of Unimodular Triangulations–Positive Results
  • Language: en
  • Pages: 83

Existence of Unimodular Triangulations–Positive Results

Unimodular triangulations of lattice polytopes arise in algebraic geometry, commutative algebra, integer programming and, of course, combinatorics. In this article, we review several classes of polytopes that do have unimodular triangulations and constructions that preserve their existence. We include, in particular, the first effective proof of the classical result by Knudsen-Mumford-Waterman stating that every lattice polytope has a dilation that admits a unimodular triangulation. Our proof yields an explicit (although doubly exponential) bound for the dilation factor.

The Geometry of Schemes
  • Language: en
  • Pages: 265

The Geometry of Schemes

Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.

Zeta Functions in Algebra and Geometry
  • Language: en
  • Pages: 362

Zeta Functions in Algebra and Geometry

Contains the proceedings of the Second International Workshop on Zeta Functions in Algebra and Geometry held May 3-7, 2010 at the Universitat de les Illes Balears, Palma de Mallorca, Spain. The conference focused on the following topics: arithmetic and geometric aspects of local, topological, and motivic zeta functions, Poincare series of valuations, zeta functions of groups, rings, and representations, prehomogeneous vector spaces and their zeta functions, and height zeta functions.

Topology of Algebraic Varieties and Singularities
  • Language: en
  • Pages: 496

Topology of Algebraic Varieties and Singularities

This volume contains invited expository and research papers from the conference Topology of Algebraic Varieties, in honour of Anatoly Libgober's 60th birthday, held June 22-26, 2009, in Jaca, Spain.