You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Novel carbon allotropes, such as spherical fullerenes and nanotubes, have been added, in the last three decades, to the traditionally recognised diamond and graphite. Although fullerene C60 has been speculated about for a long time. A fullerene is, according to a classical definition, an all-carbon molecule consisting entirely of pentagons (exactly 12) and hexagons (n/2-10). Non-classical fullerene extensions to include rings of other sizes have been considered. Fullerenes are commonly synthesised by arc-discharge or laser ablation methods. Spherical fullerenes became nowadays parts of real chemistry: they can be functionalised or inserted in supramolecular assemblies.
This contributed volume is inspired by the seminal discovery and identification of C60. Starting with a comprehensive discussion featuring graphene based nanostructures, subsequent chapters include topological descriptions of matrices, polynomials and indices, and an extended analysis of the symmetry and topology of nanostructures. Carbon allotropes such as diamond and its connection to higher-dimensional spaces is explored along with important mathematical and topological considerations. Further topics covered include spontaneous symmetry breaking in graphene, polyhedral carbon structures, nanotube junction energetics, and cyclic polyines as relatives of nanotubes and fullerenes. This book is aimed at researchers active in the study of carbon materials science and technology.
These tiny structures could offer architectural designs for the cities of the future. The authors explore the foam-like carbon structures, which relate to ‘schwarzites’ and which are infinite periodic minimal surfaces of negative curvature. They show that the periodicity of close repeat units of such structures is evident not only in these formations but also in all of the carbon allotropes. The text provides literature and data on the field of nanostructure periodicity and the authors’ own results on nanostructure building and energy calculations.
The Mathematics and Topology of Fullerenes presents a comprehensive overview of scientific and technical innovations in theoretical and experimental studies. Topics included in this multi-author volume are: Clar structures for conjugated nanostructures; counting polynomials of fullerenes; topological indices of fullerenes; the wiener index of nanotubes; toroidal fullerenes and nanostars; C60 Structural relatives: a topological study; local combinatorial characterization of fullerenes; computation of selected topological indices of C60 and C80 Fullerenes via the Gap Program; 4valent- analogues of fullerenes; a detailed atlas of Kekule structures of C60. The Mathematics and Topology of Fullerenes is targeted at advanced graduates and researchers working in carbon materials, chemistry and physics.
This book explains key concepts in theoretical chemistry and explores practical applications in structural chemistry. For experimentalists, it highlights concepts that explain the underlying mechanisms of observed phenomena, and at the same time provides theoreticians with explanations of the principles and techniques that are important in property design. Themes covered include conceptual and applied wave functions and density functional theory (DFT) methods, electronegativity and hard and soft (Lewis) acid and base (HSAB) concepts, hybridization and aromaticity, molecular magnetism, spin transition and thermochromism. Offering insights into designing new properties in advanced functional materials, it is a valuable resource for undergraduates of physical chemistry, cluster chemistry and structure/reactivity courses as well as graduates and researchers in the fields of physical chemistry, chemical modeling and functional materials.
"Carbon Bonding and Structures: Advances in Physics and Chemistry" features detailed reviews which describe the latest advances in the modeling and characterization of fundamental carbon based materials and recently designed carbon composites. Significant advances are reported and reviewed by globally recognized experts in the field. The quantification, indexing, and interpretation of physical and chemical patterns of carbon atoms in molecules, crystals, and nanosystems is presented. "Carbon Bonding and Structures: Advances in Physics and Chemistry" will be primarily of interest to theoretical physical chemists and computational materials scientists based in academia, government laboratories, and industry.
Global economic demands and population surges have led to dwindling resources and problematic environmental issues. As the climate and its natural resources continue to struggle, it has become necessary to research and employ new forms of sustainable technology to help meet the growing demand. Sustainable Nanosystems Development, Properties, and Applications features emergent research and theoretical concepts in the areas of nanotechnology, photovoltaics, electrochemistry, and materials science, as well as within the physical and environmental sciences. Highlighting progressive approaches and utilization techniques, this publication is a critical reference source for researchers, engineers, students, scientists, and academicians interested in the application of sustainable nanotechnology.
The series Advances in Dendritic Macromolecules aims to cover the synthesis and supramolecular chemistry of dendritic or cascade super-molecules as well as their less perfect hyperbranched cousins.The field of hyperbranched macromolecules, specifically dendrimers, has continued to expand at an amazing rate. The synthetic aspects, which were assumed to be over several years ago, have opened new avenues into the mesomolecular regime. The synthetic ingenuity of chemical artists has afforded new monomers and their diverse combinations to give rise to (poly)functionalized materials that embrace new supramolecular concepts in areas such as molecular recognition, assembly, encapsulation, and inclus...
This title reports the state-of-the-art advancements in modeling and characterization of fundamental and the recently designed carbon based nanocomposites (graphenes, fullerenes, polymers, crystals and allotropic forms). Written by leading experts in the field, the book explores the quantification, indexing, and interpretation of physical and chemical exotic properties related with space-time structure-evolution, phase transitions, chemical reactivity, and topology. Exotic Properties of Carbon Nanomatter is aimed at researchers in academia and industry.
The need for economically feasible and multifunctional materials becomes more acute as the natural physical and chemical resources reveal either their limits or reveal the difficulties and increasing costs in storage, transport, and conversion. This reference presents the work from contributors from various fields, of various ages and from differen