You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Alignment phenomena are characteristic of liquid crystalline materials, and understanding them is critically important in understanding the essential features and behavior of liquid crystals and the performance of Liquid Crystal Devices (LCDs). Furthermore, in LCD production lines, the alignment process is of practical importance. Alignment Technologies and Applications of Liquid Crystal Devices demonstrates both the fundamental and practical aspects of alignment phenomena in liquid crystals. The physical basis of alignment phenomena is first introduced in order to aid the understanding of the various physical phenomena observed in the interface between liquid crystalline materials and align...
Explains the fundamentals and practical applications of flat and flexible OLEDs for displays and lighting Organic light-emitting diodes (OLEDs) have emerged as the leading technology for the new display and lighting market. OLEDs are solid-state devices composed of thin films of organic molecules that create light with the application of electricity. OLEDs can provide brighter, crisper displays on electronic devices and use less power than conventional light-emitting diodes (LEDs) or liquid crystal displays (LCDs) used today. This book covers both the fundamentals and practical applications of flat and flexible OLEDs. Key features: Covers all of the aspects necessary to the design and manufa...
This book offers a wealth of knowledge and information about the fundamental and practical aspects of flexible organic light-emitting diode (OLED) devices. The book provides an overview of these devices by considering their merits and business potential, the history of their research and development, the fundamental technology, and required properties for materials, devices, processes, and future trends of flexible OLED devices. The practical sections describe novel, cutting-edge expertise for flexible substrates, gas barriers, encapsulation, novel electrodes, and on-demand patterning for OLED devices. Applications of the technologies of ultra-thin glass, stainless steel foil, and barrier fi...
Liquid crystals allow us to perform experiments that provide insight into fundamental problems of modern physics, such as phase transitions, frustration, elasticity, hydrodynamics, defects, growth phenomena, and optics. Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments is a result of personal research and of the graduate lectures given by the authors at the École Normale Supérieure de Lyon and the University of Paris VII, respectively. The book examines lamellar (smectic) and columnar liquid crystals, which, in addition to orientational order, possess 1D, 2D or 3D positional order. This volume illustrates original physical concepts using meth...
Liquid crystal displays were discovered in the 1960s, and today we continue to enjoy the benefits of that fundamental discovery and its translation into a wide variety of products. Like liquid crystals, polymers are unusual materials, and have similarly enjoyed a great deal of research attention because of their vast applications and uses and compl
Evolutionally optimized biomolecules and their complexes present attractive objects in the production of functionalized nanoobjects. Indeed, nucleic acid-based molecules are primary candidates as building blocks for development of nanoscale systems and devices. Written for chemists, physicists, molecular biologists, and students in related fields, Nanostructures and Nanoconstructions Based on DNA covers specific properties of metallic nanoparticles, and compares their properties with those related to nanoobjects formed by biological molecules. It also discloses details of formation and physicochemical peculiarities of the DNA nanostructures and DNA-based nanoconstructions. Furthermore, the b...
The discovery of the spatial structure of the double-stranded DNA molecule is one of the greatest achievements of science. It would not be an exaggeration to say that the DNA double helix is a distinguished symbol of modern biology. Divided into three parts, DNA Liquid-Crystalline Dispersions and Nanoconstructions covers the information presently a
Despite the large quantity of phenomenological information concerning the bulk properties of nematic phase liquid crystals, little is understood about the origin of the surface energy, particularly the surface, interfacial, and anchoring properties of liquid crystals that affect the performance of liquid crystal devices. Self-contained and unique,