You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere. Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theo...
None
This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups. Contributors: B. Allison, D. Beltiţă, W. Bertram, J. Faulkner, Ph. Gille, H. Glöckner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf.
This volume focuses on developments in the field of group theory in its broadest sense and is of interest to theoretical and experimental physicists, mathematicians, and scientists in related disciplines who are interested in the latest methods and applications. In an increasingly ultra-specialized world, this volume will demonstrate the interchange of ideas and methods in theoretical and mathematical physics.
Surveys the monopole problem on a few different levels, from classical electrodynamics up to N=2 SUSY Yang-Mills theory. and presents a compact, `bird's eye view' on the entire set of problems related with very notion of monopole including actual stand of the problem, related historical remarks and comprehensive bibliography. Presents original results obtained by the author in collaboration with other researches are presented as well as it summarizes the present status of the theory of monopoles and provides an introduction to the field.
Noncommutative differential geometry is a novel approach to geometry, aimed in part at applications in physics. It was founded in the early eighties by the 1982 Fields Medalist Alain Connes on the basis of his fundamental works in operator algebras. It is now a very active branch of mathematics with actual and potential applications to a variety of domains in physics ranging from solid state to quantization of gravity. The strategy is to formulate usual differential geometry in a somewhat unusual manner, using in particular operator algebras and related concepts, so as to be able to plug in noncommutativity in a natural way. Algebraic tools such as K-theory and cyclic cohomology and homology play an important role in this field. It is an important topic both for mathematics and physics.
Revised and updated to keep pace with changes in the field, the Fifth Edition of Practical Applications in Sports Nutrition provides students and practitioners with the latest sports nutrition information and dietary practices so they can assist athletes and fitness enthusiasts in achieving their personal performance goals. With data and statistics from the latest nutrition research and guidelines, it demonstrates effective ways to communicate sports nutrition messages to athletes and how to motivate individuals to make permanent behavior change. Important Notice: The digital edition of this book is missing some of the images or content found in the physical edition.