Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Office Hours with a Geometric Group Theorist
  • Language: en
  • Pages: 456

Office Hours with a Geometric Group Theorist

Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors. An essential primer for undergraduates making the leap to graduate work, the book begins with free groups—actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cov...

Topological Methods in Group Theory
  • Language: en
  • Pages: 473

Topological Methods in Group Theory

This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.

Geometric Group Theory
  • Language: en
  • Pages: 417

Geometric Group Theory

Geometric group theory refers to the study of discrete groups using tools from topology, geometry, dynamics and analysis. The field is evolving very rapidly and the present volume provides an introduction to and overview of various topics which have played critical roles in this evolution. The book contains lecture notes from courses given at the Park City Math Institute on Geometric Group Theory. The institute consists of a set of intensive short courses offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The courses begin at an introductory level suitable for grad...

A Primer on Mapping Class Groups
  • Language: en
  • Pages: 490

A Primer on Mapping Class Groups

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.

Conformal Geometry of Discrete Groups and Manifolds
  • Language: en
  • Pages: 541

Conformal Geometry of Discrete Groups and Manifolds

The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, Univ...

Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces
  • Language: en
  • Pages: 164

Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces

he authors introduce and study the notions of hyperbolically embedded and very rotating families of subgroups. The former notion can be thought of as a generalization of the peripheral structure of a relatively hyperbolic group, while the latter one provides a natural framework for developing a geometric version of small cancellation theory. Examples of such families naturally occur in groups acting on hyperbolic spaces including hyperbolic and relatively hyperbolic groups, mapping class groups, , and the Cremona group. Other examples can be found among groups acting geometrically on spaces, fundamental groups of graphs of groups, etc. The authors obtain a number of general results about rotating families and hyperbolically embedded subgroups; although their technique applies to a wide class of groups, it is capable of producing new results even for well-studied particular classes. For instance, the authors solve two open problems about mapping class groups, and obtain some results which are new even for relatively hyperbolic groups.

The Role of the Spectrum in the Cyclic Behavior of Composition Operators
  • Language: en
  • Pages: 98

The Role of the Spectrum in the Cyclic Behavior of Composition Operators

Introduction and preliminaries Linear fractional maps with an interior fixed point Non elliptic automorphisms The parabolic non automorphism Supercyclic linear fractional composition operators Endnotes Bibliography.

Methods in the Theory of Hereditarily Indecomposable Banach Spaces
  • Language: en
  • Pages: 128

Methods in the Theory of Hereditarily Indecomposable Banach Spaces

A general method producing Hereditarily Indecomposable (H I) Banach spaces is provided. We apply this method to construct a nonseparable H I Banach space $Y$. This space is the dual, as well as the second dual, of a separable H I Banach space.

Ergodic Theory of Equivariant Diffeomorphisms: Markov Partitions and Stable Ergodicity
  • Language: en
  • Pages: 113

Ergodic Theory of Equivariant Diffeomorphisms: Markov Partitions and Stable Ergodicity

On the assumption that the $\Gamma$-orbits all have dimension equal to that of $\Gamma$, this title shows that there is a naturally defined $F$- and $\Gamma$-invariant measure $\nu$ of maximal entropy on $\Lambda$ (it is not assumed that the action of $\Gamma$ is free).

Holder Continuity of Weak Solutions to Subelliptic Equations with Rough Coefficients
  • Language: en
  • Pages: 176

Holder Continuity of Weak Solutions to Subelliptic Equations with Rough Coefficients

This mathematical monograph is a study of interior regularity of weak solutions of second order linear divergence form equations with degenerate ellipticity and rough coefficients. The authors show that solutions of large classes of subelliptic equations with bounded measurable coefficients are H lder continuous. They present two types of results f