You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In light of recent alarming environmental trends combined with increasing commercial viability of fuel cells, the time is propitious for a book focusing on the systematic aspects of cell plant technology. This multidisciplinary text covers the main types of fuel cells, R&D issues, plant design and construction, and economic factors to provide industrial and academic researchers working in electrical systems design, electrochemistry, and engineering with a unique and comprehensive resource.
Brought to you by the creator of numerous bestselling handbooks, the Handbook of Energy Efficiency and Renewable Energy provides a thorough grounding in the analytic techniques and technological developments that underpin renewable energy use and environmental protection. The handbook emphasizes the engineering aspects of energy conservation and renewable energy. Taking a world view, the editors discuss key topics underpinning energy efficiency and renewable energy systems. They provide content at the forefront of the contemporary debate about energy and environmental futures. This is vital information for planning a secure energy future. Practical in approach, the book covers technologies c...
Fuel cells have been recognized to be destined to form the cornerstone of energy technologies in the twenty-first century. The rapid advances in fuel cell system development have left current information available only in scattered journals and Internet sites. Advances in Fuel Cells fills the information gap between regularly scheduled journals and university level textbooks by providing in-depth coverage over a broad scope. The present volume provides informative chapters on thermodynamic performance of fuel cells, macroscopic modeling of polymer-electrolyte membranes, the prospects for phosphonated polymers as proton-exchange fuel cell membranes, polymer electrolyte membranes for direct methanol fuel cells, materials for state of the art PEM fuel cells, and their suitability for operation above 100°C, analytical modelling of direct methanol fuel cells, and methanol reforming processes. - Includes contributions by leading experts working in both academic and industrial R&D - Disseminates the latest research discoveries - A valuable resource for senior undergraduates and graduate students, it provides in-depth coverage over a broad scope
The field of solid state ionics deals with ionically conducting materials in the solid state and numerous devices based on such materials. Solid state ionic materials cover a wide spectrum, ranging from inorganic crystalline and polycrystalline solids, ceramics, glasses, polymers, composites and nano-scale materials. A large number of Scientists in Asia are engaged in research in solid state ionic materials and devices and since 1988. The Asian Society for solid state ionics has played a key role in organizing a series of bi-ennial conferences on solid state ionics in different Asian countries. The contributions in this volume were presented at the 10th conference in the series organized by ...
The thesis has critically examined, both theoretically and experimentally, a novel tri-generation system concept - with encouraging system performance demonstrated. The thesis establishes the significant potential of the novel tri-generation system in providing effective built environment decarbonisation through decentralised generation; strengthening the case for a future hydrogen economy. In response to the critical need to decarbonise the built environment, alternative methods for more effective energy utilisation need to be explored including tri-generation systems. The thesis presents the design, development and testing of a novel proof-of-concept tri-generation system based on solid oxide fuel cell (SOFC) and liquid desiccant air conditioning technology to provide electricity, heating and cooling to building applications. No previous work has been reported on such a system. The theme of the work sits within the topics of low-carbon and sustainable energy technologies, building services and low carbon building applications.
Energy storage plays an important role in supporting power-hungry devices and achieving stable power supply by optimally balancing supply and demand with ever-increasing requirement for computing power and the intermittent nature of renewable resources. Emerging Trends in Energy Storage Systems and Industrial Applications focuses on emerging trends in energy storage systems, applicable to various types of applications including heat and power generation, electrical and hybrid transportation. With performance limitations in current energy storage devices, such as limited energy density, power density, and cycle life, major challenges in the complex and dynamic environments of energy storage a...
A collection of Papers Presented at the 28th International Conference and Exposition on Advanced Ceramics and Composites held in conjunction with the 8th International Symposium on Ceramics in Energy Storage and Power Conversion Systems.
This brief provides a comprehensive overview of contemporary research and materials technologies utilizing oriented-attachment nanocrystals (OA NCs) for the energy conversion devices. Starting with a historical introduction, the book presents basic theory with an emphasis on thermodynamic and kinetic models of the oriented-attachment nanocrystals growth. Further chapters review recent advances in the synthesis, characterization, and application of the oriented-attachment nanocrystals in fuel cells, batteries, supercapacitors, solar cells and photocatalysis. This book will appeal to researchers and scholars from a variety of disciplines including electrochemistry, materials science, chemical engineering, physics and mechanical engineering.