You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Bioinformatics and Computational Biology: Technological Advancements, Applications and Opportunities is an invaluable resource for general and applied researchers who analyze biological data that is generated, at an unprecedented rate, at the global level. After careful evaluation of the requirements for current trends in bioinformatics and computational biology, it is anticipated that the book will provide an insightful resource to the academic and scientific community. Through a myriad of computational resources, algorithms, and methods, it equips readers with the confidence to both analyze biological data and estimate predictions. The book offers comprehensive coverage of the most essenti...
The Generator Coordinate Method (GCM) is a mathematical tool for the understanding of stable atomic nuclei. Electronic, Atomic and Molecular Calculations is designed to assist scientists applying GCM in the analysis of the electronic structure of atoms and molecules. There have been numerous publications covering nuclear physics and electronic structure of atoms and molecules, but this book is unique in the sense that it specifically addresses the application of GCM for such purposes. Using this book, researchers will be able to understand and calculate the electronic structure in a novel manner.* Only book that covers the Generator Coordinate Method and applications for atoms, molecules and nuclei* Clearly describes how the GCM can be used as a powerful tool for design of atomic basis sets* Reviews current literature on GCM in atomic and molecular fields and a large part of the literature of the method in nuclear physics
In recent years, the field of Toxinology has expanded substantially. On the one hand it studies venomous animals, plants and micro organisms in detail to understand their mode of action on targets. While on the other, it explores the biochemical composition, genomics and proteomics of toxins and venoms to understand their three interaction with life forms (especially humans), development of antidotes and exploring their pharmacological potential. Therefore, Toxinology has deep linkages with biochemistry, molecular biology, anatomy and pharmacology. In addition, there is a fast developing applied subfield, clinical toxinology, which deals with understanding and managing medical effects of tox...
Bioinformatics: Methods and Applications provides a thorough and detailed description of principles, methods, and applications of bioinformatics in different areas of life sciences. It presents a compendium of many important topics of current advanced research and basic principles/approaches easily applicable to diverse research settings. The content encompasses topics such as biological databases, sequence analysis, genome assembly, RNA sequence data analysis, drug design, and structural and functional analysis of proteins. In addition, it discusses computational approaches for vaccine design, systems biology and big data analysis, and machine learning in bioinformatics.It is a valuable sou...
Em Empreendedorismo Universitário são abordados temas e algumas metodologias para melhor empreender, como: plano de negócios, canvas, programas de aceleração/incubação, proteção intelectual. As orientações e iniciativas apresentadas na obra tratam em específico do empreendedorismo universitário, observando que a caminhada dos que decidiram empreender não é curta, pois envolve no mínimo duas perspectivas: a primeira, requer habilidades e conhecimentos sobre a área do negócio; e a segunda, requer saber sobre gestão (pessoas, finanças, propaganda etc.). Neste livro são apresentadas formas utilizadas dentro das universidades para auxiliar estas pessoas que optaram pela caminhada empreendedora e inovadora.
Genome sequences are now available that enable us to determine the biological components that make up a cell or an organism. The discipline of systems biology examines how these components interact and form networks, and how the networks generate whole cell functions corresponding to observable phenotypes. This textbook, devoted to systems biology, describes how to model networks, how to determine their properties, and how to relate these to phenotypic functions. The prerequisites are some knowledge of linear algebra and biochemistry. Though the links between the mathematical ideas and biological processes are made clear, the book reflects the irreversible trend of increasing mathematical content in biology education. Therefore to assist both teacher and student, in an associated website Palsson provides problem sets, projects and Powerpoint slides, and keeps the presentation in the book concrete with illustrative material and experimental results.
Electrochemistry is the branch of chemistry that deals with the chemical action of electricity and the production of electricity by chemical reactions. In a world short of energy sources yet long on energy use, electrochemistry is a critical component of the mix necessary to keep the world economies growing. Electrochemistry is involved with such important applications as batteries, fuel cells, corrosion studies, hydrogen energy conversion, and bioelectricity. Research on electrolytes, cells, and electrodes is within the scope of this old but extremely dynamic field. This book details advances in metal electrodeposition.
For chemists, attempting to mimic nature by synthesizing complex natural products from raw material is a challenge that is fraught with pitfalls. To tackle this unique but potentially rewarding task, researchers can rely on well-established reactions and methods of practice, or apply their own synthesis methods to verify their potential. Whatever the goal and its complexity, there are multiple ways of achieving it. We must now establish a strategic and effective plan that requires the minimum number of steps, but lends itself to widespread use. This book is structured around the study of a dozen target products (butyrolactone, macrolide, indole compound, cyclobutanic terpene, spiro- and polycyclic derivatives, etc.). For each product, the different disconnections are presented and the associated syntheses are analyzed step by step. The key reactions are described explicitly, followed by diagrams showing the range of impact of certain transformations. This set of data alone is conducive to understanding syntheses and indulging in this difficult, but worthwhile activity.
This textbook covers the main tools and techniques used in bioanalysis, provides an overview of their principles, and offers several examples of their application and future trends in diagnosis. Chapters from expert contributors explore the role of bioanalysis in different areas such as biochemistry, physiology, forensics, and clinical diagnosis, including topics from sampling/sample preparation, chemometrics in bioanalysis to the latest techniques used in the field. Particular attention is given to the recent advances in the application of mass spectrometry, NMR, electrochemical methods and separation techniques in bioanalysis. Readers will also find more about the application of microchip-based devices and analytical microarrays. This textbook will appeal to graduate/advanced undergraduate students in Chemistry, Biology, Biochemistry, Pharmacy, and Chemical Engineering. It is also a useful resource for researchers and professionals working in the fields of biomedicine and veterinary sciences, with clear explanations and examples of how the different bioanalytical devices are applied for clinical diagnosis.