You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Data mining, an interdisciplinary field combining methods from artificial intelligence, machine learning, statistics and database systems, has grown tremendously over the last 20 years and produced core results for applications like business intelligence, spatio-temporal data analysis, bioinformatics, and stream data processing. The fifteen contributors to this volume are successful and well-known data mining scientists and professionals. Although by no means an exhaustive list, all of them have helped the field to gain the reputation and importance it enjoys today, through the many valuable contributions they have made. Mohamed Medhat Gaber has asked them (and many others) to write down the...
Mohamed Medhat Gaber “It is not my aim to surprise or shock you – but the simplest way I can summarise is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until – in a visible future – the range of problems they can handle will be coextensive with the range to which the human mind has been applied” by Herbert A. Simon (1916-2001) 1Overview This book suits both graduate students and researchers with a focus on discovering knowledge from scienti c data. The use of computational power for data analysis and knowledge discovery in scienti c disciplines has found its roots with ...
Processing data streams has raised new research challenges over the last few years. This book provides the reader with a comprehensive overview of stream data processing, including famous prototype implementations like the Nile system and the TinyOS operating system. Applications in security, the natural sciences, and education are presented. The huge bibliography offers an excellent starting point for further reading and future research.
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.
Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments. The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-based deployment models. The book’s second section examines the usage of advanced Big Data processin...
This book contains thoroughly refereed extended papers from the Second International Workshop on Knowledge Discovery from Sensor Data, Sensor-KDD 2008, held in Las Vegas, NV, USA, in August 2008. The 12 revised papers presented together with an invited paper were carefully reviewed and selected from numerous submissions. The papers feature important aspects of knowledge discovery from sensor data, e.g., data mining for diagnostic debugging; incremental histogram distribution for change detection; situation-aware adaptive visualization; WiFi mining; mobile sensor data mining; incremental anomaly detection; and spatiotemporal neighborhood discovery for sensor data.
This book constitutes revised selected papers from the International Workshops held at the Second International Conference on Process Mining, ICPM 2020, which took place during October 4-9, 2020. The conference was planned to take place in Padua, Italy, but had to be held online due to the COVID-19 pandemic. The conference focuses on the area of process mining research and practice, including theory, algorithmic challenges, and applications. The co-located workshops provided a forum for novel research ideas. The 29 papers included in this volume were carefully reviewed and selected from 59 submissions. They stem from the following workshops: 1st International Workshop on Event Data and Behavioral Analytics (EDBA) 1st International Workshop on Leveraging Machine Learning in Process Mining (ML4PM) 1st International Workshop on Streaming Analytics for Process Mining (SA4PM'20) 5th International Workshop on Process Querying, Manipulation, and Intelligence (PQMI) 3rd International Workshop on Process-Oriented Data Science for Healthcare (PODS4H) 1st International Workshop on Trust and Privacy in Process Analytics (TPPA)
This book constitutes the refereed proceedings of the 13th Conference on Artificial Intelligence in Medicine, AIME 2011, held in Bled, Slovenia, in July 2011. The 42 revised full and short papers presented together with 2 invited talks were carefully reviewed and selected from 113 submissions. The papers are organized in topical sections on knowledge-based systems; data mining; special session on AI applications; probabilistic modeling and reasoning; terminologies and ontologies; temporal reasoning and temporal data mining; therapy planning, scheduling and guideline-based care; and natural language processing.
The two-volume set LNAI 7894 and LNCS 7895 constitutes the refereed proceedings of the 12th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2013, held in Zakopane, Poland in June 2013. The 112 revised full papers presented together with one invited paper were carefully reviewed and selected from 274 submissions. The 56 papers included in the second volume are organized in the following topical sections: evolutionary algorithms and their applications; data mining; bioinformatics and medical applications; agent systems, robotics and control; artificial intelligence in modeling and simulation; and various problems of artificial intelligence.
The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering