You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Applications of Nanofluid for Heat Transfer Enhancement explores recent progress in computational fluid dynamic and nonlinear science and its applications to nanofluid flow and heat transfer. The opening chapters explain governing equations and then move on to discussions of free and forced convection heat transfers of nanofluids. Next, the effect of nanofluid in the presence of an electric field, magnetic field, and thermal radiation are investigated, with final sections devoted to nanofluid flow in porous media and application of nanofluid for solidification. The models discussed in the book have applications in various fields, including mathematics, physics, information science, biology, medicine, engineering, nanotechnology, and materials science. - Presents the latest information on nanofluid free and force convection heat transfer, of nanofluid in the presence of thermal radiation, and nanofluid in the presence of an electric field - Provides an understanding of the fundamentals in new numerical and analytical methods - Includes codes for each modeling method discussed, along with advice on how to best apply them
In the present book, various applications of electric field are introduced in health and biology like treating cancer and cell sorting and in engineering and technological applications like enhancing the heat transfer, colloidal hydrodynamics and stability, and lithography. Electric field is defined as a force field arising from the electric charges. Depending on the nature of the material (the ability to polarize) and the inherent or attained surface charges, the response of the electric field varies.
This book seeks to comprehensively cover recent progress in computational fluid dynamics and nonlinear science and its applications to MHD and FHD nanofluid flow and heat transfer. The book will be a valuable reference source to researchers in various fields, including materials science, nanotechnology, mathematics, physics, information science, engineering and medicine, seeing to understand the impact of external magnetic fields on the hydrothermal behavior of nanofluids in order to solve a wide variety of theoretical and practical problems. - Readers will gain a full understanding of the fundamentals in new numerical and analytical methods in MHD (Magnetohydrodynamics) - Includes complete coverage of governing equations in which nanofluid is used as working fluid, and where magnetic fields are applied to nanofluids - A single-source reference covering recent progress in computational fluid dynamics and nonlinear science, and its applications to MHD and FHD nanofluid flow and heat transfer
The text offers a detailed presentation of mathematical, numerical, and experimental techniques for nanofluids. It further covers the synthesis, characterization, stability, and heat transport. The book comprehensively discusses topics such as the comparison of heat transfer models, flow features of ternary hybrid nanofluids, thermodynamics and mass diffusion, and natural convection in triangular cavities. This book: Emphasizes the enhancement of heat transfer processes through nanoparticles, extending beyond heat transfer to applications in renewable energy. Explores the applications of nanofluids in enhancing food processing and agricultural practices. Covers thermal instability of couple-...
The consumption of any kind of energy has a significant role in protecting energy in the economic development of any country. Today, request in the sector has led to beautiful and large buildings around the world. It is noteworthy that buildings will spend about 30% of the worldwide energy produced. An energy storage system should have certain features that include proper energy storage material with a specific melting temperature at the optimum range, decent heat transfer well, and a pleasant enclosure compatible with the most important energy storage methods. Some features of nano-enhanced phase change materials are presented in this book.
Understand the latest developments in solar nanotechnology with this comprehensive guide Solar energy has never seemed a more critical component of humanity’s future. As global researchers and industries work to develop sustainable technologies and energy sources worldwide, the need to increase efficiency and decrease costs becomes paramount. Nanotechnology has the potential to play a considerable role in meeting these challenges, leading to the development of solar energy systems that overcome the limitations of existing technologies. Nanotechnology Applications for Solar Energy Systems is a comprehensive guide to the latest technological advancements and applications of nanotechnology in...
In this book, various aspects of heating, ventilation, and air-conditioning (HVAC) systems are investigated. HVAC systems are milestones of building mechanical systems that provide thermal comfort for occupants accompanied with indoor air quality. HVAC systems can be classified into central and local systems according to multiple zones, location, and distribution. Primary HVAC equipment includes heating equipment, ventilation equipment, and cooling or air-conditioning equipment. Central HVAC systems are located away from buildings in a central equipment room and deliver the conditioned air by a delivery ductwork system. Central HVAC systems contain all-air, air-water, or all-water systems. Two systems should be considered as central such as heating and cooling panels and water-source heat pumps.
In the present book, nanofluid heat and mass transfer in engineering problems are investigated. The use of additives in the base fluid like water or ethylene glycol is one of the techniques applied to augment heat transfer. Newly, innovative nanometer-sized particles have been dispersed in the base fluid in heat transfer fluids. The fluids containing the solid nanometer-sized particle dispersion are called "nanofluids." At first, nanofluid heat and mass transfer over a stretching sheet are provided with various boundary conditions. Problems faced for simulating nanofluids are reported. Also, thermophysical properties of various nanofluids are presented. Nanofluid flow and heat transfer in the presence of magnetic field are investigated. Furthermore, applications for electrical and biomedical engineering are provided. Besides, applications of nanofluid in internal combustion engine are provided.
In the present book, various applications of microfluidics and nanofluidics are introduced. Microfluidics and nanofluidics span a broad array of disciplines including mechanical, materials, and electrical engineering, surface science, chemistry, physics and biology. Also, this book deals with transport and interactions of colloidal particles and biomolecules in microchannels, which have great importance to many microfluidic applications, such as drug delivery in life science, microchannel heat exchangers in electronic cooling, and food processing industry. Furthermore, this book focuses on a detailed description of the thermal transport behavior, challenges and implications that involve the development and use of HTFs under the influence of atomistic-scale structures and industrial applications.
Different numerical and analytical methods have been employed to find the solution of governing equations for nanofluid flow and heat transfer. Applications of Nanofluid Transportation and Heat Transfer Simulation provides emerging research exploring the theoretical and practical aspects and applications of heat and nanofluid transfer. With practical examples and proposed methodology, it features coverage on a broad range of topics such as nanoparticles, electric fields, and hydrothermal behavior, making it an ideal reference source for engineers, researchers, graduate students, professionals, and academics.