You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Neutrosophic theory and applications have been expanding in all directions at an astonishing rate especially after the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structure such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic s...
This volume is a collection of seventeen papers, written by different authors and co-authors (listed in the order of the papers): F. Smarandache, K. Bhutani, M. Kumar, G. Garg, S. Aggarwal, P. Biswas, S. Pramanik, B. C. Giri, J. Ye, A. Mukherjee, M. Datta, S. Sarkar, N. Shah, M. K. EL Gayyar, S. K. Patro, B. C. Cuong, P. H. Phong, A. A. Salama, I. M. Hanafy, H. Elghawalby and M. S. Dabash, R. Roy, P. Das, D. Mandal, Santhi R., Udhayarani N., F. Yuhua, S. A. Akinleye, A.A.A. Agboola, and J. Chen.
In this paper, we introduce and study the concept of "neutrosophic crisp closed set "and "neutrosophic crisp continuous function. Possible application to GIS topology rules are touched upon.
This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The 78 authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
In this paper, we use the one dimensional AH-isometry to find the structure of the solutions of many neutrosophic differential equations. These equations will be handled by the algebraic direct image of the neutrosophic AH-isometry taken in one dimension.
This volume presents state-of-the-art papers on new topics related to neutrosophic theories, such as neutrosophic algebraic structures, neutrosophic triplet algebraic structures, neutrosophic extended triplet algebraic structures, neutrosophic algebraic hyperstructures, neutrosophic triplet algebraic hyperstructures, neutrosophic n-ary algebraic structures, neutrosophic n-ary algebraic hyperstructures, refined neutrosophic algebraic structures, refined neutrosophic algebraic hyperstructures, quadruple neutrosophic algebraic structures, refined quadruple neutrosophic algebraic structures, neutrosophic image processing, neutrosophic image classification, neutrosophic computer vision, neutrosophic machine learning, neutrosophic artificial intelligence, neutrosophic data analytics, neutrosophic deep learning, and neutrosophic symmetry, as well as their applications in the real world.
In this paper, we introduce the new notion of interval-valued neutrosophic crisp sets providing a tool for approximating undefinable or complex concepts in real world. First, we deal with some of its algebraic structures. We also define an interval-valued neutrosophic crisp (vanishing) point and obtain some of its properties. Next, we define an interval-valued neutrosophic crisp topology, base (subbase), neighborhood, and interior (closure), respectively and investigate some of each property, and give some examples. Finally, we define an interval-valued neutrosophic crisp continuity and quotient topology and study some of each property.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
In this paper, we introduce the new notion of intuitionistic neutrosophic crisp sets as a tool for approximating undefinable or complex concepts in real world. First, we deal with some of its algebraic structures. Next, we define an intuitionistic neutrosophic crisp topology, base (subbase) and interior (closure), respectively and investigate some of each properties, and give some examples. Finally, we discussed various intuitionistic neutrosophic crisp continuities.