You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With updates and enhancements to the incredibly successful first edition, Probability and Random Processes for Electrical and Computer Engineers, Second Edition retains the best aspects of the original but offers an even more potent introduction to probability and random variables and processes. Written in a clear, concise style that illustrates the subject’s relevance to a wide range of areas in engineering and physical and computer sciences, this text is organized into two parts. The first focuses on the probability model, random variables and transformations, and inequalities and limit theorems. The second deals with several types of random processes and queuing theory. New or Updated f...
Scientists and engineers must use methods of probability to predict the outcome of experiments, extrapolate results from a small case to a larger one, and design systems that will perform optimally when the exact characteristics of the inputs are unknown. While many engineering books dedicated to the advanced aspects of random processes and systems include background information on probability, an introductory text devoted specifically to probability and with engineering applications is long overdue. Probability for Electrical and Computer Engineers provides an introduction to probability and random variables. Written in a clear and concise style that makes the topic interesting and relevant...
This textbook provides a straightforward, clear explanation of probability and random variables for communications engineering students. The author focuses on the most essential subjects of probability and random variables, eliminating unnecessary details of this difficult subject. After an introduction to the topic, the author covers the essentials of experiments, sample spaces, events, and probability laws, while investigating how they relate to communications engineering work. He goes on to discuss total probability theorems, after which he covers discrete random variables and continuous random variables. The author uses his years of teaching probability and random variable concepts to engineering students to form the text in a very understandable manner. The book features exercises, examples, case studies, and other key classroom materials
This book addresses the challenges associated with efficient Mixed-Criticality (MC) system design. We focus on application analysis through execution time analysis and task scheduling analysis in order to execute more low-criticality tasks in the system, i.e., improving the Quality-of-Service (QoS), while guaranteeing the correct execution of high-criticality tasks. Further, this book addresses the challenge of enhancing QoS using parallelism in multi-processor hardware platforms.