You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
- How did the Sun come into existence? - How was the Earth formed? - How long has Earth been the way it is now, with its combination of oceans and continents? - How do you define “life”? - How did the first life forms emerge? - What conditions made it possible for living things to evolve? All these questions are answered in this colourful textbook addressing undergraduate students in "Origins of Life" courses and the scientifically interested public. The authors take the reader on an amazing voyage through time, beginning five thousand million years ago in a cloud of interstellar dust and ending five hundred million years ago, when the living world that we see today was finally formed. A chapter on exoplanets provides an overview of the search for planets outside the solar system, especially for habitable ones. The appendix closes the book with a glossary, a bibliography of further readings and a summary of the Origins of the Earth and life in fourteen boxes.
Devoted to exploring questions about the origin and evolution of life in our Universe, this highly interdisciplinary book brings together a broad array of scientists. Thirty chapters assembled in eight major sections convey the knowledge accumulated and the richness of the debates generated by this challenging theme. The text explores the latest research on the conditions and processes that led to the emergence of life on Earth and, by extension, perhaps on other planetary bodies. Diverse sources of knowledge are integrated, from astronomical and geophysical data, to the role of water, the origin of minimal life properties and the oldest traces of biological activity on our planet. This text will not only appeal to graduate students but to the large body of scientists interested in the challenges presented by the origin of life, its evolution, and its possible existence beyond Earth.
The interdisciplinary field of Astrobiology constitutes a joint arena where provocative discoveries are coalescing concerning, e.g. the prevalence of exoplanets, the diversity and hardiness of life, and its increasingly likely chances for its emergence. Biologists, astrophysicists, biochemists, geoscientists and space scientists share this exciting mission of revealing the origin and commonality of life in the Universe. The members of the different disciplines are used to their own terminology and technical language. In the interdisciplinary environment many terms either have redundant meanings or are completely unfamiliar to members of other disciplines. The Encyclopedia of Astrobiology serves as the key to a common understanding. Each new or experienced researcher and graduate student in adjacent fields of astrobiology will appreciate this reference work in the quest to understand the big picture. The carefully selected group of active researchers contributing to this work and the expert field editors intend for their contributions, from an internationally comprehensive perspective, to accelerate the interdisciplinary advance of astrobiology.
First comprehensive, beginning graduate level book on the emergent science of astrobiology.
This is the first of a divided two-part softcover edition of the "Lectures in Astrobiology Volume I" containing the sections "General Introduction", "The Early Earth and Other Cosmic Habitats for Life" and "Appendices" including an extensive glossary on Astrobiology. "Lectures in Astrobiology" is the first comprehensive textbook at graduate level encompassing all aspects of the emerging field of astrobiology. Volume I of the Lectures in Astrobiology gathers a first set of extensive lectures that cover a broad range of topics, from the formation of solar systems to the quest for the most primitive life forms that emerged on the Early Earth.
Astrobiology is a remarkably interdisciplinary field. This reference serves as a key to understanding technical terms from the different subfields of astrobiology, including astronomy, biology, chemistry, the geosciences and the space sciences.
A complete record of the formal organisational and administrative proceedings of the XXVII General Assembly of the International Astronomical Union.
Comprises a comprehensive reference source that unifies the entire fields of atomic molecular and optical (AMO) physics, assembling the principal ideas, techniques and results of the field. 92 chapters written by about 120 authors present the principal ideas, techniques and results of the field, together with a guide to the primary research literature (carefully edited to ensure a uniform coverage and style, with extensive cross-references). Along with a summary of key ideas, techniques, and results, many chapters offer diagrams of apparatus, graphs, and tables of data. From atomic spectroscopy to applications in comets, one finds contributions from over 100 authors, all leaders in their respective disciplines. Substantially updated and expanded since the original 1996 edition, it now contains several entirely new chapters covering current areas of great research interest that barely existed in 1996, such as Bose-Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully-searchable CD- ROM version of the contents accompanies the handbook.
This review gathers astronomers, geologists, biologists, and chemists around a common question: how did life emerge on Earth? The ultimate goal is to probe an even more demanding question: is life universal? This not-so linear account highlights problems, gaps, and controversies. Discussion covers the formation of the solar system; the building of a habitable planet; prebiotic chemistry, biochemistry, and the emergence of life; the early Earth environment, and much more.
"Devoted to exploring questions about the origin and evolution of life in our Universe, this highly interdisciplinary book brings together a broad array of scientists. Thirty chapters assembled in eight major sections convey the knowledge accumulated and the richness of the debates generated by this challenging theme. The text explores the latest research on the conditions and processes that led to the emergence of life on Earth and, by extension, perhaps on other planetary bodies. Diverse sources of knowledge are integrated, from astronomical and geophysical data, to the role of water, the origin of minimal life properties and the oldest traces of biological activity on our planet. This text will not only appeal to graduate students but to the large body of scientists interested in the challenges presented by the origin of life, its evolution, and its possible existence beyond Earth"--