You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Winner of the 2020 PROSE Award for Earth Science! Exploring environmental changes through Earth’s geological history using chemostratigraphy Chemostratigraphy is the study of the chemical characteristics of different rock layers. Decoding this geochemical record across chronostratigraphic boundaries can provide insights into geological history, past climates, and sedimentary processes. Chemostratigraphy Across Major Chronological Boundaries presents state-of-the-art applications of chemostratigraphic methods and demonstrates how chemical signatures can decipher past environmental conditions. Volume highlights include: Presents a global perspective on chronostratigraphic boundaries Describe...
A comprehensive picture of the architecture of crustal magmatic systems The composition of igneous rocks – their minerals, melts, and fluids – reveals the physical and chemical conditions under which magmas form, evolve, interact, and move from the Earth’s mantle through the crust. These magma dynamics affect processes on the surface including crustal growth and eruptive behaviour of volcanoes. Crustal Magmatic System Evolution: Anatomy, Architecture, and Physico-Chemical Processes uses analytical, experimental, and numerical approaches to explore the diversity of crustal processes from magma differentiation and assimilation to eruption at the surface. Volume highlights include: Physic...
Explores soil as a nexus for water, chemicals, and biologically coupled nutrient cycling Soil is a narrow but critically important zone on Earth's surface. It is the interface for water and carbon recycling from above and part of the cycling of sediment and rock from below. Hydrogeology, Chemical Weathering, and Soil Formation places chemical weathering and soil formation in its geological, climatological, biological and hydrological perspective. Volume highlights include: The evolution of soils over 3.25 billion years Basic processes contributing to soil formation How chemical weathering and soil formation relate to water and energy fluxes The role of pedogenesis in geomorphology Relationships between climate soils and biota Soils, aeolian deposits, and crusts as geologic dating tools Impacts of land-use change on soils The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Editors
An examination of ancient and contemporary submarine landslides and their impact Landslides are common in every subaqueous geodynamic context, from passive and active continental margins to oceanic and continental intraplate settings. They pose significant threats to both offshore and coastal areas due to their frequency, dimensions, and terminal velocity, capacity to travel great distances, and ability to generate potentially destructive tsunamis. Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles examines the mechanisms, characteristics, and impacts of submarine landslides. Volume highlights include: Use of different methodological approaches, from geophysics to field-based geology Data on submarine landslide deposits at various scales Worldwide collection of case studies from on- and off-shore Potential risks to human society and infrastructure Impacts on the hydrosphere, atmosphere, and lithosphere
The latest knowledge on mineral ore genesis and the exploration of ore deposits Global demand for metals has risen considerably over the past decade. Geologists are developing new approaches for studying ore deposits and discovering new sources. Ore Deposits: Origin, Exploration, and Exploitation is a compilation of diverse case studies on new prospects in ore deposit geology including atypical examples of mineral deposits and new methods for ore exploration. Volume highlights include: Presentation of the latest research on a range of ore deposit types Application of ore deposits to multiple areas of geology and geophysical exploration Emphasis on diverse methods and tools for the study of ore deposits Useful case studies for geologists in both academia and industry Ore Deposits: Origin, Exploration, and Exploitation is a valuable resource for economic geologists, mineralogists, petrologists, geochemists, mining engineers, research professionals, and advanced students in relevant areas of academic study. Read an interview with the editors to find out more: https://eos.org/editors-vox/developments-in-the-continuing-search-for-new-mineral-deposits
An introduction to geomagnetic storms and the hazards they pose at the Earth’s surface Geomagnetic storms are a type of space weather event that can create Geomagnetically Induced Currents (GICs) which, once they reach Earth’s surface, can interfere with power grids and transport infrastructure. Understanding the characteristics and impacts of GICs requires scientific insights from solar physics, magnetospheric physics, aeronomy, and ionospheric physics, as well as geophysics and power engineering. Geomagnetically Induced Currents from the Sun to the Power Grid is a practical introduction for researchers and practitioners that provides tools and techniques from across these disciplines. Volume highlights include: Analysis of causes of geomagnetic storms that create GICs Data and methods used to analyze and forecast GIC hazard GIC impacts on the infrastructure of the bulk power system Analysis techniques used in different areas of GIC research New methods to validate and predict GICs in transmission systems
An interdisciplinary study of the Kuroshio nutrient stream The surface water of the Kuroshio, a western boundary current in the North Pacific Ocean, is nutrient-depleted and has relatively low primary productivity, yet abundant fish populations are supported in the region. This is called the “Kuroshio Paradox”. Kuroshio Current: Physical, Biogeochemical and Ecosystem Dynamics presents research from a multidisciplinary team that conducted observational and modeling studies to investigate this contradiction. This timely and important contribution to the ocean sciences literature provides a comprehensive analysis of the Kuroshio. Volume highlights include: New insights into the role of the Kuroshio as a nutrient stream The first interdisciplinary examination of the Kuroshio Paradox Reflections on the influence of the Kuroshio on Japanese culture Research results on both the lower and higher trophic levels in the Kuroshio ecosystem Comparisons of nutrient dynamics in the Kuroshio and Gulf Stream Predictions of ecosystem responses to future climate variability
A rigorous mathematical problem-solving framework for analyzing the Earth’s energy resources GeoEnergy encompasses the range of energy technologies and sources that interact with the geological subsurface. Fossil fuel availability studies have historically lacked concise modeling, tending instead toward heuristics and overly-complex processes. Mathematical GeoEnergy: Oil Discovery, Depletion and Renewal details leading-edge research based on a mathematically-oriented approach to geoenergy analysis. Volume highlights include: Applies a formal mathematical framework to oil discovery, depletion, and analysis Employs first-order applied physics modeling, decreasing computational resource requi...
Comprehensive and up-to-date information on Earth’s most dominant year-to-year climate variation The El Niño Southern Oscillation (ENSO) in the Pacific Ocean has major worldwide social and economic consequences through its global scale effects on atmospheric and oceanic circulation, marine and terrestrial ecosystems, and other natural systems. Ongoing climate change is projected to significantly alter ENSO's dynamics and impacts. El Niño Southern Oscillation in a Changing Climate presents the latest theories, models, and observations, and explores the challenges of forecasting ENSO as the climate continues to change. Volume highlights include: Historical background on ENSO and its societ...
Advances in theories, methods and applications for shale resource use Shale is the dominant rock in the sedimentary record. It is also the subject of increased interest because of the growing contribution of shale oil and gas to energy supplies, as well as the potential use of shale formations for carbon dioxide sequestration and nuclear waste storage. Shale: Subsurface Science and Engineering brings together geoscience and engineering to present the latest models, methods and applications for understanding and exploiting shale formations. Volume highlights include: Review of current knowledge on shale geology Latest shale engineering methods such as horizontal drilling Reservoir management ...