You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The articles in this volume are based on recent research on the phenomenon of turbulence in fluid flows collected by the Institute for Mathematics and its Applications. This volume looks into the dynamical properties of the solutions of the Navier-Stokes equations, the equations of motion of incompressible, viscous fluid flows, in order to better understand this phenomenon. Although it is a basic issue of science, it has implications over a wide spectrum of modern technological applications. The articles offer a variety of approaches to the Navier-Stokes problems and related issues. This book should be of interest to both applied mathematicians and engineers.
Symmetry plays an important role in theoretical physics, applied analysis, classical differential equations, and bifurcation theory. Although numerical analysis has incorporated aspects of symmetry on an ad hoc basis, there is now a growing collection of numerical analysts who are currently attempting to use symmetry groups and representation theory as fundamental tools in their work. This book contains the proceedings of an AMS-SIAM Summer Seminar in Applied Mathematics, held in 1992 at Colorado State University. The seminar, which drew about 100 scientists from around the world, was intended to stimulate the systematic incorporation of symmetry and group theoretical concepts into numerical methods. The papers in this volume have been refereed and will not be published elsewhere.
The existence and crucial role played by large-scale, organized motions in turbulent flows are now recognized by industrial, applied and fundamental researchers alike. It has become increasingly evident that coherent structures influence mixing, noise, vibration, heat transfer, drag, etc... The accelera tion of the development of both experimental and computational programs devoted to this topic has been evident at several recent international meet ings. One of the first questions which experimentalists or numerical analysts are faced with is: how can these structures be separated from the background turbulence? This is a nontrivial task because the coherent structures are gen erally embedde...
The Late Eocene and the Eocene-Oligocene (E-O) transition mark the most profound oceanographic and climatic changes of the past 50 million years of Earth history, with cooling beginning in the middle Eocene and culminating in the major earliest Oligocene Oi-1 isotopic event. The Late Eocene is characterized by an accelerated global cooling, with a sharp temperature drop near the E-O boundary, and significant stepwise floral and faunal turnovers. These global climate changes are commonly attributed to the expansion of the Antarctic ice cap following its gradual isolation from other continental masses. However, multiple extraterrestrial bolide impacts, possibly related to a comet shower that lasted more than 2 million years, may have played an important role in deteriorating the global climate at that time. This book provides an up-to-date review of what happened on Earth at the end of the Eocene Epoch.
None
Describes methods revealing the structures and dynamics of turbulence for engineering, physical science and mathematics researchers working in fluid dynamics.
This book contains contributions by former students, colleagues and friends of Professor John L. Lumley, on the occasion of his 60th birthday, in recognition of his enormous impact on the advancement of turbulence research. A variety of experimental, computational and theoretical topics, including turbulence modeling, direct numerical simulations, compressible turbulence, turbulent shear flows, coherent structures and the Proper Orthogonal Decomposition are contained herein. The diversity and scope of these contributions are further acknowledgment of John Lumley's wide ranging influence in the field of turbulence. The large number of contributions by the authors, many of whom were participan...
In the last 25 years, one of the most striking advances in Fluid Mecha nics was certainly the discovery of coherent structures in turbulence: lab oratory experiments and numerical simulations have shown that most turbulent flows exhibit both spatially-organized large-scale structures and disorganized motions, generally at smaller scales. The develop ment of new measurement and visualization techniques have allowed a more precise characterization and investigation of these structures in the laboratory. Thanks to the unprecedented increase of computer power and to the development of efficient interactive three-dimensional colour graphics, computational fluid dynamicists can explore the still m...