You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mathematical finance has grown into a huge area of research which requires a large number of sophisticated mathematical tools. This book simultaneously introduces the financial methodology and the relevant mathematical tools in a style that is mathematically rigorous and yet accessible to practitioners and mathematicians alike. It interlaces financial concepts such as arbitrage opportunities, admissible strategies, contingent claims, option pricing and default risk with the mathematical theory of Brownian motion, diffusion processes, and Lévy processes. The first half of the book is devoted to continuous path processes whereas the second half deals with discontinuous processes. The extensive bibliography comprises a wealth of important references and the author index enables readers quickly to locate where the reference is cited within the book, making this volume an invaluable tool both for students and for those at the forefront of research and practice.
Professor Xunjing Li (1935–2003) was a pioneer in control theory in China. He was influential in the Chinese community of applied mathematics, and the global community of optimal control theory of distributed parameter systems. He has made very important contributions to the optimal control theory of distributed parameter systems, in particular regarding the first-order necessary conditions (Pontryagin-type maximum principle) for optimal control of nonlinear infinite-dimensional systems. This proceedings volume is a collection of original research papers or reviews authored or co-authored by Professor Li's former students, postdoctoral fellows, and mentored scholars in the areas of control theory, dynamic systems, mathematical finance, and stochastic analysis, among others. These articles show in some degree the influence of Professor Xunjing Li.
This book explores the mathematics that underpins pricing models for derivative securities such as options, futures and swaps in modern markets. Models built upon the famous Black-Scholes theory require sophisticated mathematical tools drawn from modern stochastic calculus. However, many of the underlying ideas can be explained more simply within a discrete-time framework. This is developed extensively in this substantially revised second edition to motivate the technically more demanding continuous-time theory.
Xunjing Li (1935-2003) was a pioneer in control theory in China. He was known in the Chinese community of applied mathematics, and in the global community of optimal control theory of distributed parameter systems. He has made important contributions to the optimal control theory of distributed parameter systems, in particular regarding the first-order necessary conditions (Pontryagin-type maximum principle) for optimal control of nonlinear infinite-dimensional systems. He directed the Seminar of Control Theory at Fudan towards stochastic control theory in 1980s, and mathematical finance in 1990s, which has led to several important subsequent developments in both closely interactive fields. These remarkable efforts in scientific research and education, among others, gave birth to the so-called “Fudan School”.This proceedings volume includes a collection of original research papers or reviews authored or co-authored by Xunjing Li's former students, postdoctoral fellows, and mentored scholars in the areas of control theory, dynamic systems, mathematical finance, and stochastic analysis, among others.
Numerical Methods in Finance describes a wide variety of numerical methods used in financial analysis.
Annotation This book is a collection of state-of-the-art surveys on various topics in mathematical finance, with an emphasis on recent modelling and computational approaches. The volume is related to a a ~Special Semester on Stochastics with Emphasis on Financea (TM) that took place from September to December 2008 at the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of Sciences in Linz, Austria
This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.
This is a thoroughly updated edition of Dynamic Asset Pricing Theory, the standard text for doctoral students and researchers on the theory of asset pricing and portfolio selection in multiperiod settings under uncertainty. The asset pricing results are based on the three increasingly restrictive assumptions: absence of arbitrage, single-agent optimality, and equilibrium. These results are unified with two key concepts, state prices and martingales. Technicalities are given relatively little emphasis, so as to draw connections between these concepts and to make plain the similarities between discrete and continuous-time models. Readers will be particularly intrigued by this latest edition's ...
Since the publication of the first edition of this book, the area of mathematical finance has grown rapidly, with financial analysts using more sophisticated mathematical concepts, such as stochastic integration, to describe the behavior of markets and to derive computing methods. Maintaining the lucid style of its popular predecessor, this concise and accessible introduction covers the probabilistic techniques required to understand the most widely used financial models. Along with additional exercises, this edition presents fully updated material on stochastic volatility models and option pricing as well as a new chapter on credit risk modeling. It contains many numerical experiments and real-world examples taken from the authors' own experiences. The book also provides all of the necessary stochastic calculus theory and implements some of the algorithms using SciLab. Key topics covered include martingales, arbitrage, option pricing, and the Black-Scholes model.
This is the first book about the emerging field of utility indifference pricing for valuing derivatives in incomplete markets. René Carmona brings together a who's who of leading experts in the field to provide the definitive introduction for students, scholars, and researchers. Until recently, financial mathematicians and engineers developed pricing and hedging procedures that assumed complete markets. But markets are generally incomplete, and it may be impossible to hedge against all sources of randomness. Indifference Pricing offers cutting-edge procedures developed under more realistic market assumptions. The book begins by introducing the concept of indifference pricing in the simplest...