You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book brings together papers that cover a wide spectrum of areas and give an unsurpassed overview of research into differential geometry.
Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.
In the 25 years since their introduction, Higgs bundles have seen a surprising number of interactions within different areas of mathematics and physics. There is a recent surge of interest following Ngô Bau Châu's proof of the Fundamental Lemma and the work of Kapustin and Witten on the Geometric Langlands program. The program on The Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles, was held at the Institute for Mathematical Sciences at the National University of Singapore during 2014. It hosted a number of lectures on recent topics of importance related to Higgs bundles, and it is the purpose of this volume to collect these lectures in a form accessible to graduate students and young researchers interested in learning more about this field.
Solitons were discovered by John Scott Russel in 1834, and have interested scientists and mathematicians ever since. They have been the subject of a large body of research in a wide variety of fields of physics and mathematics, not to mention engineering and other branches of science such as biology. This volume comprises the written versions of the talks presented at a workshop held at Queen's University in 1997, an interdisciplinary meeting wherein top researchers from many fields could meet, interact, and exchange ideas. Topics covered include mathematical and numerical aspects of solitons, as well as applications of solitons to nuclear and particle physics, cosmology, and condensed-matter physics. The book should be of interest to researchers in any field in which solitons are encountered.
The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and theirrelations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give...
In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere. Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theo...
This volume presents an array of topics that introduce the reader to key ideas in active areas in geometry and topology. The material is presented in a way that both graduate students and researchers should find accessible and enticing. The topics covered range from Morse theory and complex geometry theory to geometric group theory, and are accompanied by exercises that are designed to deepen the reader's understanding and to guide them in exciting directions for future investigation.
Articles from leading researchers to introduce the reader to cutting-edge topics in integrable systems theory.
Vector bundles and their associated moduli spaces are of fundamental importance in algebraic geometry. In recent decades this subject has been greatly enhanced by its relationships with other areas of mathematics, including differential geometry, topology and even theoretical physics, specifically gauge theory, quantum field theory and string theory. Peter E. Newstead has been a leading figure in this field almost from its inception and has made many seminal contributions to our understanding of moduli spaces of stable bundles. This volume has been assembled in tribute to Professor Newstead and his contribution to algebraic geometry. Some of the subject's leading experts cover foundational material, while the survey and research papers focus on topics at the forefront of the field. This volume is suitable for both graduate students and more experienced researchers.
This volume presents lectures given at the Summer School Wisła 18: Nonlinear PDEs, Their Geometry, and Applications, which took place from August 20 - 30th, 2018 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures in the first part of this volume were delivered by experts in nonlinear differential equations and their applications to physics. Original research articles from members of the school comprise the second part of this volume. Much of the latter half of the volume complements the methods expounded in the first half by illustrating additional applications of geometric theory of differential equations. Various subjects are covered, providing readers a glimpse of current research. Other topics covered include thermodynamics, meteorology, and the Monge–Ampère equations. Researchers interested in the applications of nonlinear differential equations to physics will find this volume particularly useful. A knowledge of differential geometry is recommended for the first portion of the book, as well as a familiarity with basic concepts in physics.