You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Inspired by the Famous Curves Index of the award-winning website by MacTutor History of Mathematics archive maintained by John J. O'Connor and Edmund F. Robertson and hosted by the University of St Andrews, the author wrote this handbook of famous plane curves using Mathematica® as a tool to graph, animate, calculate and to construct derived curves from given ones. Some constructions are extremely difficult to draw by hands, especially those involve numerical integration can be performed with ease with Mathematica®. Even for some simple curves before the invention of computer, drawing them by hands might take a long time. To borrow the words of Rudy Rucker (author of The Fourth Dimension):...
The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.
The link between mathematics and art remains as strong today as it was in the earliest instances of decorative and ritual art. Arts, architecture, music and painting have for a long time been sources of new developments in mathematics, and vice versa. Many great painters have seen no contradiction between artistic and mathematical endeavors, contributing to the progress of both, using mathematical principles to guide their visual creativity, enriching their visual environment with the new objects created by the mathematical science. Owing to the recent development of the so nice techniques for visualization, while mathematicians can better explore these new mathematical objects, artists can ...
Nigel Hitchin is one of the world's foremost figures in the fields of differential and algebraic geometry and their relations with mathematical physics, and he has been Savilian Professor of Geometry at Oxford since 1997. Geometry and Physics: A Festschrift in honour of Nigel Hitchin contain the proceedings of the conferences held in September 2016 in Aarhus, Oxford, and Madrid to mark Nigel Hitchin's 70th birthday, and to honour his far-reaching contributions to geometry and mathematical physics. These texts contain 29 articles by contributors to the conference and other distinguished mathematicians working in related areas, including three Fields Medallists. The articles cover a broad range of topics in differential, algebraic and symplectic geometry, and also in mathematical physics. These volumes will be of interest to researchers and graduate students in geometry and mathematical physics.
This volume presents the proceedings of a conference on differential geometry held in honour of the 60th birthday of A M Naveira. The meeting brought together distinguished researchers from a variety of areas in Riemannian geometry. The topics include: geometry of the curvature tensor, variational problems for geometric functionals such as WillmoreOCoChen tension, volume and energy of foliations and vector fields, and energy of maps. Many papers concern special submanifolds in Riemannian and Lorentzian manifolds, such as those with constant mean (scalar, Gauss, etc.) curvature and those with finite total curvature."
Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. T...
Alfred Gray's work covered a great part of differential geometry. In September 2000, a remarkable International Congress on Differential Geometry was held in his memory in Bilbao, Spain. Mathematicians from all over the world, representing 24 countries, attended the event. This volume includes major contributions by well known mathematicians (T. Banchoff, S. Donaldson, H. Ferguson, M. Gromov, N. Hitchin, A. Huckleberry, O. Kowalski, V. Miquel, E. Musso, A. Ros, S. Salamon, L. Vanhecke, P. Wellin and J.A. Wolf), the interesting discussion from the round table moderated by J.-P. Bourguignon, and a carefully selected and refereed selection of the Short Communications presented at the Congress. This book represents the state of the art in modern differential geometry, with some general expositions of some of the more active areas: special Riemannian manifolds, Lie groups and homogeneous spaces, complex structures, symplectic manifolds, geometry of geodesic spheres and tubes and related problems, geometry of surfaces, and computer graphics in differential geometry.
The Second Edition combines a traditional approach with the symbolic manipulation abilities of Mathematica to explain and develop the classical theory of curves and surfaces. You will learn to reproduce and study interesting curves and surfaces - many more than are included in typical texts - using computer methods. By plotting geometric objects and studying the printed result, teachers and students can understand concepts geometrically and see the effect of changes in parameters. Modern Differential Geometry of Curves and Surfaces with Mathematica explains how to define and compute standard geometric functions, for example the curvature of curves, and presents a dialect of Mathematica for c...
Riemannian Holonomy Groups and Calibrated Geometry covers an exciting and active area of research at the crossroads of several different fields in mathematics and physics. Drawing on the author's previous work the text has been written to explain the advanced mathematics involved simply and clearly to graduate students in both disciplines.
Several distinctive aspects make Dynamical Systems unique, including: treating the subject from a mathematical perspective with the proofs of most of the results included providing a careful review of background materials introducing ideas through examples and at a level accessible to a beginning graduate student