You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a compilation of Researcher Profiles from Centre for Advanced Research on Energy (CARe), Universiti Teknikal Malaysia Melaka.
Handbook of Emerging Materials for Sustainable Energy provides a comprehensive accounting on the fundamentals, current developments, challenges and future prospects of emerging materials for the development of sustainable energy. Each chapter addresses a distinct and important area within the energy field and includes comprehensive data to support the materials being presented. Sections cover Batteries, Capacitors and Supercapacitors, Fuel cells, Thermoelectrics, Novel illumination sources and techniques, Photovoltaics & Solar cells, Alternative energy sources, hydrogen as an energy source, including hydrogen production and fuel generation, the use of Biofuels and Carbon dioxide. The book co...
Nanofluids provides insight to the mathematical, numerical, and experimental methodologies of the industrial application of nanofluids. It covers the fundamentals and applications of nanofluids in heat and mass transfer. Thoroughly covering the thermo-physical and optical properties of nanofluids in various operations, the book highlights the necessary parameters for enhancing their performance. It discusses the application of nanofluids in solar panels, car radiators, boiling operations, and CO2 absorption and regeneration. The book also considers the numeric approach for heat and mass transfer and applications, in addition to the challenges of nanofluids in industrial processes. The book will be a useful reference for researchers and graduate students studying nanotechnology and nanofluids advancements within the fields of mechanical and chemical engineering.
Nanofluids are a new class of heat transfer fluids engineered by dispersing and stably suspending nanoparticles in traditional heat transfer fluids. Recently they have obtained global attention from the scientific community owing to their unique properties and significant applications in different engineering fields. Nanofluids: Preparation, Applications and Simulation Methods provides a comprehensive review of recent advances in this important research field. Different approaches for preparing some remarkable families of nanofluids such as aluminum oxide-based nanofluids, CuO/Cu-based nanofluids, carbon nanotubes/graphene-based nanofluids, ZnO-based nanofluids, Fe3O4-based nanofluids, and S...
Covering energy-saving technologies and how these are incorporated into component design, this book is relevant to many industries, including automotive engineering, and discusses the topical issue of sustainability in industry. This book details recent fundamental developments in the field of tribology in industrial systems. Tribology has advanced significantly in recent years. Tribological performance depends on external parameters such as contact pressure at the interface, system temperature, relative speed between bodies and contact behaviour. Through ensuring that mechanisms work in an energy-efficient manner and minimizing wear, engineers should seek to implement the study of tribology...
Thermal Properties of Nanofluids presents emerging prospects for understanding and controlling thermophysical properties at the nanoscale. It covers a comprehensive study of recent progress concerning these properties from the solid state to colloids and, above all, a different look at the effect of temperature on nanofluids’ thermal conducting. Introducing various techniques for measuring solid-state properties, including thermal conductivity, thermal diffusivity, and specific heat capacity, this book presents modeling approaches developed for predicting these properties by molecular dynamic (MD) simulations. It discusses the main factors that affect solid-state properties, such as grain size, grain boundaries, surface interactions, doping, and temperature, and the effects of all these factors. This book will interest industry professionals and academic researchers studying the thermophysical behavior of nanomaterials and heat transfer applications of nanofluids. It will serve graduate engineering students studying advanced fluid mechanics, heat transfer, and nanomaterials.
The text provides insight into the different mathematical tools and techniques that can be applied to the analysis and numerical computations of flow models. It further discusses important topics such as the heat transfer effect on boundary layer flow, modeling of flows through porous media, anisotropic polytrophic gas model, and thermal instability in viscoelastic fluids. This book: Discusses modeling of Rayleigh-Taylor instability in nanofluid layer and thermal instability in viscoelastic fluids Covers open FOAM simulation of free surface problems, and anisotropic polytrophic gas model Highlights the Sensitivity Analysis in Aerospace Engineering, MHD Flow of a Micropolar Hybrid Nanofluid, ...
This book is a product of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) to be held in Langkawi in November 2017. It is divided into four sections according to the thrust areas: Computer Science, Mathematics, Statistics, and Multidisciplinary Applications. All sections sought to confront current issues that society faces today. The book brings collectively quantitative, as well as qualitative, research methods that are also suitable for future research undertakings. Researchers in Computer Science, Mathematics and Statistics can use this book as a sourcebook to enrich their research works.
The field of manufacturing science has evolved over the years with the introduction of non-traditional machining processes. This reference book introduces the latest trends in modeling and optimization of manufacturing processes. It comprehensively covers important topics including additive manufacturing at multi-scales, sustainable manufacturing, rapid manufacturing of metallic components using 3D printing, ultrasonic-assisted bone drilling for biomedical applications, micromachining, and laser-assisted machining. This book is useful to senior undergraduate and graduate students in the fields of mechanical engineering, industrial and production engineering, and aerospace engineering.