You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Bringing you up-to-date with the latest developments in MEMS technology, this major revision of the best-selling An Introduction to Microelectromechanical Systems Engineering offers you a current understanding of this cutting-edge technology. You gain practical knowledge of MEMS materials, design, and manufacturing, and learn how it is being applied in industrial, optical, medical and electronic markets. The second edition features brand new sections on RF MEMS, photo MEMS, micromachining on materials other than silicon, reliability analysis, plus an expanded reference list. With an emphasis on commercialized products, this unique resource helps you determine whether your application can ben...
Here's the book to keep handy when you have to overcome obstacles in design, simulation, fabrication and application of MEMS sensors. This practical guide to design tools and packaging helps you create the sensors you need for the full range of mechanical microsensor applications. Critical physical sensing techniques covered include piezoresistive, piezoelectric, capacative, optical, resonant, actuation, thermal, and magnetic, as well as smart sensing.
Micro Electro Mechanical Systems (MEMS) is already about a billion dollars a year industry and is growing rapidly. So far major emphasis has been placed on the fabrication processes for various devices. There are serious issues related to tribology, mechanics, surfacechemistry and materials science in the operationand manufacturingof many MEMS devices and these issues are preventing an even faster commercialization. Very little is understood about tribology and mechanical properties on micro- to nanoscales of the materials used in the construction of MEMS devices. The MEMS community needs to be exposed to the state-of-the-artoftribology and vice versa. Fundamental understanding of friction/s...
Our mission is to provide a forum for world experts to discuss technologies, address the growing needs associated with silicon technology, and exchange their discoveries and solutions for current issues of high interest. We encourage collaboration, open discussion, and critical reviews at this conference. Furthermore, we hope that this conference will also provide collaborative opportunities for those who are interested in the semiconductor industry in Asia, particularly in China.
Providing a definitive source of knowledge about the principles, materials, and process techniques used in the fabrication of microfluidics, this practical volume is a must for your reference shelf. The book focuses on fabrication, but also covers the basic purpose, benefits, and limitations of the fabricated structures as they are applied to microfluidic sensor and actuator functions. You find guidance on rapidly assessing options and tradeoffs for the selection of a fabrication method with clear tabulated process comparisons.
HereOCOs a groundbreaking book that introduces and discusses the important aspects of lab-on-a-chip, including the practical techniques, circuits, microsystems, and key applications in the biomedical, biology, and life science fields. Moreover, this volume covers ongoing research in lab-on-a-chip integration and electric field imaging. Presented in a clear and logical manner, the book provides you with the fundamental underpinnings of lab-on-a-chip, presents practical results, and brings you up to date with state-of-the-art research in the field. This unique resource is supported with over 160 illustrations that clarify important topics throughout.
Annotation The second edition covers the latest in fabrication technologies, actuation mechanisms, packaging, switching, resonator design, and microwave and wireless applications. This practical book steers readers past the drawbacks and towards the benefits of integrating RF/microwave MEMS into communications equipment
The recent development of microfluidics has lead to the concept of lab-on-a-chip, where several functional blocks are combined into a single device that can perform complex manipulations and characterizations on the microscopic fluid sample. However, integration of multiple functionalities on a single device can be complicated. This a cutting-edge resource focuses on the crucial aspects of integration in microfluidic systems. It serves as a one-stop guide to designing microfluidic systems that are highly integrated and scalable. This practical book covers a wide range of critical topics, from fabrication techniques and simulation tools, to actuation and sensing functional blocks and their inter-compatibility. This unique reference outlines the benefits and drawbacks of different approaches to microfluidic integration and provides a number of clear examples of highly integrated microfluidic systems.
Selected, peer reviewed papers from the Asia Pacific Conference on Optics Manufacture 2007, 11-13 January 2007, Hong Kong, P.R.China