You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a consolidated description of the process of electro-spinning and detailed properties and applications of electro-spun electrodes and electrolytes in energy storage devices. It discusses the preparation, structure and electrochemical properties of nanofiber electrode and electrolyte materials. It focuses exclusively on Lithium Ion batteries, with the contents discussing different aspects of electrospinning in storage systems. This book aims to provide a comprehensive resource to help researchers choose the best electrodes and electrolyte materials based on the properties required for their desired commercial applications. It will be a useful guide to graduate students and researchers working in solid-state chemistry, physics, materials chemistry, and chemical engineering on aspects of energy storage.
This volume covers recent advanced battery systems such as metal-ion, hybrid, and metal-air batteries. It includes an introduction to fluoride, potassium, zinc, chloride, aluminium, and iron-ion batteries; special or hybrid batteries are included, with calcium, nuclear, thermal, and lithium-magnesium hybrid batteries also explained. It summarizes the recent progress and chemistry behind the popular metal-air batteries, including a systematic overview of the components, design, and integration of these new battery technologies. Features: Covers recent battery technologies in detail, from the chemistry to advances in post-lithium-ion batteries. Various post-lithium-ion batteries are discussed in detail. Includes a section on ion batteries, exploring new types of metal-ion batteries. Focuses in each chapter on a particular battery type, including different metal-ion batteries such as zinc, potassium, aluminium, and their air version batteries. Provides authoritative coverage of scientific content via global contributing experts. This book is aimed at graduate students, researchers, and professionals in materials science, chemical and electrical engineering, and electrochemistry.
Energy is a key world issue in the context of climate change and increasing population, 'calling for alternative fuels, better energy storage, and energy-saving devices. This books reviews the principles and applications of metals and metal oxides for energy, with focus on batteries, electrodes, nanomaterials, electronics, supercapacitors, biofuels and sensors.
This book presents concepts, methods and applications of inorganic nanomaterials for energy applications such as fuel cells and batteries, for environmental applications such as water purification, and for medicinal applications such as cancer treatments. The founding father of nanotechnology, Eric Drexler, always communicated a unique vision in exploring new materials and creating advancements in molecular nanotechnology. He emphasized the potential advantages of smaller size, higher efficiency and less needed resources for applications in energy, environment and medicine. A higher surface to volume ratio of inorganic nanomaterials is a key property.
This book summarizes recent findings on the use of new nanostructured materials for biofuels, batteries, fuel cells, solar cells, supercapacitors and health biosensors. Chapters describe principles and how to choose a nanomaterial for specific applications in energy, environment and medicine.
Polymer and Ceramic Electrolytes for Energy Storage Devices features two volumes that focus on the most recent technological and scientific accomplishments in polymer, ceramic, and specialty electrolytes and their applications in lithium-ion batteries. These volumes cover the fundamentals in a logical and clear manner for students, as well as researchers from different disciplines, to follow. The set includes the following volumes: Polymer Electrolytes for Energy Storage Devices, Volume I, offers a detailed explanation of recent progress and challenges in polymer electrolyte research for energy storage devices. Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. These volumes will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials and chemical engineers, as well as those involved in related disciplines.
Polymer Electrolytes for Energy Storage Devices, Volume I, offers a detailed explanation of recent progress and challenges in polymer electrolyte research for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Discusses a variety of energy storage systems and their workings and a detailed history of LIBs • Covers a wide range of polymer-based electrolytes including PVdF, PVdF-co-HFP, PAN, blend polymeric systems, composite polymeric systems, and polymer ionic liquid gel electrolytes • Provides a comprehensive review of biopolymer electrolytes for energy storage applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials, chemical, electrical, and mechanical engineers, as well as those involved in related disciplines.
Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Offers a detailed outlook on the performance requirements and ion transportation mechanism in solid polymer electrolytes • Covers solid-state electrolytes based on oxides (perovskite, anti-perovskite) and sulfide-type ion conductor electrolytes for lithium-ion batteries followed by solid-state electrolytes based on NASICON...
This book provides a consolidated description of the process of electro-spinning and detailed properties and applications of electro-spun electrodes and electrolytes in energy storage devices. It discusses the preparation, structure and electrochemical properties of nanofiber electrode and electrolyte materials. It focuses exclusively on Lithium Ion batteries, with the contents discussing different aspects of electrospinning in storage systems. This book aims to provide a comprehensive resource to help researchers choose the best electrodes and electrolyte materials based on the properties required for their desired commercial applications. It will be a useful guide to graduate students and researchers working in solid-state chemistry, physics, materials chemistry, and chemical engineering on aspects of energy storage.