Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Prediction, Learning, and Games
  • Language: en
  • Pages: 4

Prediction, Learning, and Games

This important text and reference for researchers and students in machine learning, game theory, statistics and information theory offers a comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections.

Algorithmic Learning Theory
  • Language: en
  • Pages: 432

Algorithmic Learning Theory

  • Type: Book
  • -
  • Published: 2014-01-15
  • -
  • Publisher: Unknown

None

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems
  • Language: en
  • Pages: 138

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems

  • Type: Book
  • -
  • Published: 2012
  • -
  • Publisher: Now Pub

In this monograph, the focus is on two extreme cases in which the analysis of regret is particularly simple and elegant: independent and identically distributed payoffs and adversarial payoffs. Besides the basic setting of finitely many actions, it analyzes some of the most important variants and extensions, such as the contextual bandit model.

Algorithmic Learning Theory
  • Language: en
  • Pages: 464

Algorithmic Learning Theory

  • Type: Book
  • -
  • Published: 1990
  • -
  • Publisher: Springer

None

Bandit Algorithms
  • Language: en
  • Pages: 537

Bandit Algorithms

A comprehensive and rigorous introduction for graduate students and researchers, with applications in sequential decision-making problems.

Introduction to Multi-Armed Bandits
  • Language: en
  • Pages: 296

Introduction to Multi-Armed Bandits

  • Type: Book
  • -
  • Published: 2019
  • -
  • Publisher: Unknown

Multi-armed bandits is a rich, multi-disciplinary area that has been studied since 1933, with a surge of activity in the past 10-15 years. This is the first book to provide a textbook like treatment of the subject.

Advances in Neural Information Processing Systems 17
  • Language: en
  • Pages: 1710

Advances in Neural Information Processing Systems 17

  • Type: Book
  • -
  • Published: 2005
  • -
  • Publisher: MIT Press

Papers presented at NIPS, the flagship meeting on neural computation, held in December 2004 in Vancouver.The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December, 2004 conference, held in Vancouver.

Online Learning and Online Convex Optimization
  • Language: en
  • Pages: 88

Online Learning and Online Convex Optimization

Online Learning and Online Convex Optimization is a modern overview of online learning. Its aim is to provide the reader with a sense of some of the interesting ideas and in particular to underscore the centrality of convexity in deriving efficient online learning algorithms.

Advanced Lectures on Machine Learning
  • Language: en
  • Pages: 267

Advanced Lectures on Machine Learning

  • Type: Book
  • -
  • Published: 2003-07-01
  • -
  • Publisher: Springer

Machine Learning has become a key enabling technology for many engineering applications and theoretical problems alike. To further discussions and to dis- minate new results, a Summer School was held on February 11–22, 2002 at the Australian National University. The current book contains a collection of the main talks held during those two weeks in February, presented as tutorial chapters on topics such as Boosting, Data Mining, Kernel Methods, Logic, Reinforcement Learning, and Statistical Learning Theory. The papers provide an in-depth overview of these exciting new areas, contain a large set of references, and thereby provide the interested reader with further information to start or to...

Algorithmic Learning Theory
  • Language: en
  • Pages: 519

Algorithmic Learning Theory

Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical ?elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the ?eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (correspond...