Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Quanta of Maths
  • Language: en
  • Pages: 695

Quanta of Maths

The work of Alain Connes has cut a wide swath across several areas of mathematics and physics. Reflecting its broad spectrum and profound impact on the contemporary mathematical landscape, this collection of articles covers a wealth of topics at the forefront of research in operator algebras, analysis, noncommutative geometry, topology, number theory and physics. Specific themes covered by the articles are as follows: entropy in operator algebras, regular $C^*$-algebras of integral domains, properly infinite $C^*$-algebras, representations of free groups and 1-cohomology, Leibniz seminorms and quantum metric spaces; von Neumann algebras, fundamental Group of $\mathrm{II}_1$ factors, subfacto...

K-theory and Noncommutative Geometry
  • Language: en
  • Pages: 460

K-theory and Noncommutative Geometry

Since its inception 50 years ago, K-theory has been a tool for understanding a wide-ranging family of mathematical structures and their invariants: topological spaces, rings, algebraic varieties and operator algebras are the dominant examples. The invariants range from characteristic classes in cohomology, determinants of matrices, Chow groups of varieties, as well as traces and indices of elliptic operators. Thus K-theory is notable for its connections with other branches of mathematics. Noncommutative geometry develops tools which allow one to think of noncommutative algebras in the same footing as commutative ones: as algebras of functions on (noncommutative) spaces. The algebras in quest...

Cyclic Cohomology at 40: Achievements and Future Prospects
  • Language: en
  • Pages: 592

Cyclic Cohomology at 40: Achievements and Future Prospects

This volume contains the proceedings of the virtual conference on Cyclic Cohomology at 40: Achievements and Future Prospects, held from September 27–October 1, 2021 and hosted by the Fields Institute for Research in Mathematical Sciences, Toronto, ON, Canada. Cyclic cohomology, since its discovery forty years ago in noncommutative differential geometry, has become a fundamental mathematical tool with applications in domains as diverse as analysis, algebraic K-theory, algebraic geometry, arithmetic geometry, solid state physics and quantum field theory. The reader will find survey articles providing a user-friendly introduction to applications of cyclic cohomology in such areas as higher ca...

Perspectives on Noncommutative Geometry
  • Language: en
  • Pages: 176

Perspectives on Noncommutative Geometry

This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008. Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture. Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This ...

Topological and Bivariant K-Theory
  • Language: en
  • Pages: 268

Topological and Bivariant K-Theory

Topological K-theory is one of the most important invariants for noncommutative algebras. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. This book describes a bivariant K-theory for bornological algebras, which provides a vast generalization of topological K-theory. In addition, it details other approaches to bivariant K-theories for operator algebras. The book studies a number of applications, including K-theory of crossed products, the Baum-Connes assembly map, twisted K-theory with some of its applications, and some variants of the Atiyah-Singer Index Theorem.

My Mathematical Universe: People, Personalities, And The Profession
  • Language: en
  • Pages: 770

My Mathematical Universe: People, Personalities, And The Profession

This is an autobiography and an exposition on the contributions and personalities of many of the leading researchers in mathematics and physics with whom Dr Krishna Alladi, Professor of Mathematics at the University of Florida, has had personal interaction with for over six decades. Discussions of various aspects of the physics and mathematics academic professions are included.Part I begins with the author's unusual and frequent introductions as a young boy to scientific luminaries like Nobel Laureates Niels Bohr, Murray Gell-Mann, and Richard Feynman, in the company of his father, the scientist Alladi Ramakrishnan. Also in Part I is an exciting account of how the author started his research...

Index Theory and Operator Algebras
  • Language: en
  • Pages: 202

Index Theory and Operator Algebras

This collection of papers by leading researchers provides a broad picture of current research directions in index theory. Based on lectures presented at the NSF-CBMS Regional Conference on $K$-Homology and Index Theory, held in August, 1991 at the University of Colorado at Boulder, the book provides both a careful exposition of new perspectives in classical index theory and an introduction to currently active areas of the field. Presented here are two new proofs of the classical Atiyah-Singer Index Theorem, as well as index theorems for manifolds with boundary and open manifolds. Index theory for semi-simple $p$-adic groups and the geometry of discrete groups are also discussed. Throughout the book, the application of operator algebras emerges as a central theme. Aimed at graduate students and researchers, this book is suitable as a text for an advanced graduate course on index theory.

Superstrings, Geometry, Topology, and $C^*$-algebras
  • Language: en
  • Pages: 265

Superstrings, Geometry, Topology, and $C^*$-algebras

This volume contains the proceedings of an NSF-CBMS Conference held at Texas Christian University in Fort Worth, Texas, May 18-22, 2009. The papers, written especially for this volume by well-known mathematicians and mathematical physicists, are an outgrowth of the talks presented at the conference. Topics examined are highly interdisciplinary and include, among many other things, recent results on D-brane charges in $K$-homology and twisted $K$-homology, Yang-Mills gauge theory and connections with non-commutative geometry, Landau-Ginzburg models, $C^*$-algebraic non-commutative geometry and ties to quantum physics and topology, the rational homotopy type of the group of unitary elements in...

$C^*$-Algebras: 1943-1993
  • Language: en
  • Pages: 434

$C^*$-Algebras: 1943-1993

None

The Universality of the Radon Transform
  • Language: en
  • Pages: 740

The Universality of the Radon Transform

  • Type: Book
  • -
  • Published: 2003-10-02
  • -
  • Publisher: OUP Oxford

Written by a leading scholar in mathematics, this monograph discusses the Radon transform, a field that has wide ranging applications to X-ray technology, partial differential equations, nuclear magnetic resonance scanning, and tomography. In this book, Ehrenpreis focuses on recent research and highlights the strong relationship between high-level pure mathematics and applications of the Radon transform to areas such as medical imaging. The first part of the book discusses parametric and nonparametric Radon transforms, Harmonic Functions and Radon transform on Algebraic Varieties, nonlinear Radon and Fourier transforms, Radon transform on groups, and Radon transform as the interrelation of g...