You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The main notions of set theory (cardinals, ordinals, transfinite induction) are fundamental to all mathematicians, not only to those who specialize in mathematical logic or set-theoretic topology. Basic set theory is generally given a brief overview in courses on analysis, algebra, or topology, even though it is sufficiently important, interesting, and simple to merit its own leisurely treatment. This book provides just that: a leisurely exposition for a diversified audience. It is suitable for a broad range of readers, from undergraduate students to professional mathematicians who want to finally find out what transfinite induction is and why it is always replaced by Zorn's Lemma. The text introduces all main subjects of ``naive'' (nonaxiomatic) set theory: functions, cardinalities, ordered and well-ordered sets, transfinite induction and its applications, ordinals, and operations on ordinals. Included are discussions and proofs of the Cantor-Bernstein Theorem, Cantor's diagonal method, Zorn's Lemma, Zermelo's Theorem, and Hamel bases. With over 150 problems, the book is a complete and accessible introduction to the subject.
Based on the lectures for undergraduates at Moscow State University, this book presents a lively and concise introduction to the central facts and basic notions of the general theory of computation. It begins with the definition of a computable function and an algorithm, and discusses decidability, enumerability, universal functions, numberings and their properties, the fixed point theorem, arithmetical hierarchy, oracle computations, and degrees.
Vols. 1-4 include material to June 1, 1929.
Documents the dispersal of Russian art in the United States, beginning with the works exhibited at the Louisiana Purchase Exposition in St. Louis in 1904.