You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This third edition includes the corrections made by the late C. Truesdell in his personal copy. It is annotated by S. Antman who describes the monograph`s genesis and the impact it has made on the modern development of mechanics. Originally published as Volume III/3 of the famous Encyclopedia of Physics in 1965, this book describes and summarizes "everything that was both known and worth knowing in the field at the time." It also has greatly contributed to the unification and standardization of the concepts, terms and notations in the field.
If charged particles move through the interplanetary or interstellar medium, they interact with a large-scale magnetic ?eld such as the magnetic ?eld of the Sun or the Galactic magnetic ?eld. As these background ?elds are usually nearly constant in time and space, they can be approximated by a homogeneous ?eld. If there are no additional ?elds, the particle trajectory is a perfect helix along which the par- cle moves at a constant speed. In reality, however, there are turbulent electric and magnetic?elds dueto the interstellaror solar wind plasma. These ?elds lead to sc- tering of the cosmic rays parallel and perpendicular to the background ?eld. These scattering effects, which usually are o...
Soliton theory, the theory of nonlinear waves in lattices composed of particles interacting by nonlinear forces, is treated rigorously in this book. The presentation is coherent and self-contained, starting with pioneering work and extending to the most recent advances in the field. Special attention is focused on exact methods of solution of nonlinear problems and on the exact mathematical treatment of nonlinear lattice vibrations. This new edition updates the material to take account of important new advances.
This book provides a unique survey displaying the power of Riccati equations to describe reversible and irreversible processes in physics and, in particular, quantum physics. Quantum mechanics is supposedly linear, invariant under time-reversal, conserving energy and, in contrast to classical theories, essentially based on the use of complex quantities. However, on a macroscopic level, processes apparently obey nonlinear irreversible evolution equations and dissipate energy. The Riccati equation, a nonlinear equation that can be linearized, has the potential to link these two worlds when applied to complex quantities. The nonlinearity can provide information about the phase-amplitude correlations of the complex quantities that cannot be obtained from the linearized form. As revealed in this wide ranging treatment, Riccati equations can also be found in many diverse fields of physics from Bose-Einstein-condensates to cosmology. The book will appeal to graduate students and theoretical physicists interested in a consistent mathematical description of physical laws.
The global approach to nonlinear renewal theory is integrated with the author's own local approach. Both the theory and its applications are placed in perspective by including a discussion of the linear renewal theorem and its applications to the sequential probability ratio test. Applications to repeated significance tests, to tests with power one, and to sequential estimation are also included. The monograph is self-contained for readers with a working knowledge of measure-theoretic probability and intermediate statistical theory.
The first investigations of nonlinear approximation problems were made by P.L. Chebyshev in the last century, and the entire theory of uniform approxima tion is strongly connected with his name. By making use of his ideas, the theories of best uniform approximation by rational functions and by polynomials were developed over the years in an almost unified framework. The difference between linear and rational approximation and its implications first became apparent in the 1960's. At roughly the same time other approaches to nonlinear approximation were also developed. The use of new tools, such as nonlinear functional analysis and topological methods, showed that linearization is not sufficie...
This book discusses the deep connection between gravitation and the nonlinear sigma model coupled to gauge fields in a new perspective. Interesting developments emerge. Some other new aspects are provided such as the constant use of infinite dimensional differential geometry, a powerful tool not only for making the theory more rigorous but also for a heuristic understanding of field theory. A systematic treatment of the topological properties of Yang-Mills theory, the nonlinear sigma model and gravity is also given. Being sufficiently pedagogical and self-contained, this book could also be used as a base for an interdisciplinary course at the graduate level.
Every student in engineering or in other fields of the applied sciences who has passed through his curriculum knows that the treatment of nonlin ear problems has been either avoided completely or is confined to special courses where a great number of different ad-hoc methods are presented. The wide-spread believe that no straightforward solution procedures for nonlinear problems are available prevails even today in engineering cir cles. Though in some courses it is indicated that in principle nonlinear problems are solveable by numerical methods the treatment of nonlinear problems, more or less, is considered to be an art or an intellectual game. A good example for this statement was the sea...
We begin our applications of fixed point methods with existence of solutions to certain first order initial initial value problems. This problem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y'. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de fined either locally or globally on I, according to the assumptions imposed on I. Notice that (1. 1) is a system of first order equations because I takes its values in Rn. In section 3. 2 we will first establish some basic existence theorems which guarantee that a solution to (1....