You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A practical and understandable approach to nonparametric statistics for researchers across diverse areas of study As the importance of nonparametric methods in modern statistics continues to grow, these techniques are being increasingly applied to experimental designs across various fields of study. However, researchers are not always properly equipped with the knowledge to correctly apply these methods. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach fills a void in the current literature by addressing nonparametric statistics in a manner that is easily accessible for readers with a background in the social, behavioral, biological, and physical sciences. Each chapter...
Introduction and review; Procedures that utilize data from a single sample; Procedures that utilize data from two independent samples; Procedures that utilize data from two related samples; Chi-square tests of independence and homogeneity; Procedures that utilize data from three or more independent samples; Procedures that utilize data from three or more related; Coodness-of-fit tests; Rank correlation and other measures of association; Simple linear regression analysis.
What do you do when you realize that the data set from the study that you have just completed violates the sample size or other requirements needed to apply parametric statistics? Nonparametric Statistics for Health Care Research by Marjorie A. Pett was developed for such scenarios—research undertaken with limited funds, often using a small sample size, with the primary objective of improving client care and obtaining better client outcomes. Covering the most commonly used nonparametric statistical techniques available in statistical packages and on open-resource statistical websites, this well-organized and accessible Second Edition helps readers, including those beyond the health sciences field, to understand when to use a particular nonparametric statistic, how to generate and interpret the resulting computer printouts, and how to present the results in table and text format.
Following in the footsteps of its bestselling predecessors, the Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition provides researchers, teachers, and students with an all-inclusive reference on univariate, bivariate, and multivariate statistical procedures.New in the Fifth Edition:Substantial updates and new material th
Through the use of actual research investigations that have appeared in recent social science journals, Gibbons shows the reader the specific methodology and logical rationale for many of the best-known and most frequently used nonparametric methods that are applicable to most small and large sample sizes. The methods are organized according to the type of sample structure that produced the data to be analyzed, and the inference types covered are limited to location tests, such as the sign test, the Mann-Whitney-Wilcoxon test, the Kruskal-Wallis test and Friedman's test. The formal introduction of each test is followed by a data example, calculated first by hand and then by computer.
Revision of the classic text in the field, adding two new chapters and thoroughly updating all others. The original structure is retained, and the book continues to serve as a combined text/reference.
“...a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught." –CHOICE This Second Edition presents a practical and understandable approach that enhances and expands the statistical toolset for readers. This book includes: New coverage of the sign test and the Kolmogorov-Smirnov two-sample test in an effort to offer a logical and natural progression to statistical power SPSS® (Version 21) software and updated screen captures to demonstrate how to perform and recognize the steps in the various procedures Data sets and odd-numbered solutions provided in an appendix, and tables of critical values Supplementary material to aid in reader comprehension, which includes: narrated videos and screen animations with step-by-step instructions on how to follow the tests using SPSS; online decision trees to help users determine the needed type of statistical test; and additional solutions not found within the book.
An intermediate text that provides a basic understanding of concepts and theory, presenting important mathematical statistics tools fundamental to the development of nonparametric statistics. Uses an intuitive approach emphasizing techniques for making a test distribution-free (such as counting and ranking). U-statistics, asymptotic efficiency, the Hodges-Lehmann technique for creating a confidence interval and a point estimator from a test, linear rank statistics, and more. Also includes currently developing areas. Readers are required to be familiar with the basic concepts of statistical inference and have a good knowledge of advanced calculus.
Probability theory; Statistical inference; Some tests based on the binomial distribution; Contingency tables; Some methods based on ranks; Statistics of the koolmogorov-smirnov type.