You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Nonlinear Systems and Their Remarkable Mathematical Structures, Volume 2 is written in a careful pedagogical manner by experts from the field of nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). This book aims to clearly illustrate the mathematical theories of nonlinear systems and its progress to both non-experts and active researchers in this area. Just like the first volume, this book is suitable for graduate students in mathematics, applied mathematics and engineering sciences, as well as for researchers in the subject of differential equations and dynamical systems. Features Collects contributions on recent advances in the subject of nonlinear systems Aims to make the advanced mathematical methods accessible to the non-experts Suitable for a broad readership including researchers and graduate students in mathematics and applied mathematics
Nonlinear Systems and Their Remarkable Mathematical Structures aims to describe the recent progress in nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). Written by experts, each chapter is self-contained and aims to clearly illustrate some of the mathematical theories of nonlinear systems. The book should be suitable for some graduate and postgraduate students in mathematics, the natural sciences, and engineering sciences, as well as for researchers (both pure and applied) interested in nonlinear systems. The common theme throughout the book is on solvable and integrable nonlinear systems of equations and methods/theories that can be applied to analyze those systems. Some applications are also discussed. Features Collects contributions on recent advances in the subject of nonlinear systems Aims to make the advanced mathematical methods accessible to the non-expert in this field Written to be accessible to some graduate and postgraduate students in mathematics and applied mathematics Serves as a literature source in nonlinear systems
Reporting a novel breakthrough in the identification and investigation of solvable and integrable nonlinearly coupled evolution ordinary differential equations (ODEs) or partial differential equations (PDEs), this text includes practical examples throughout to illustrate the theoretical concepts. Beginning with systems of ODEs, including second-order ODEs of Newtonian type, it then discusses systems of PDEs, and systems evolving in discrete time. It reports a novel, differential algorithm which can be used to evaluate all the zeros of a generic polynomial of arbitrary degree: a remarkable development of a fundamental mathematical problem with a long history. The book will be of interest to applied mathematicians and mathematical physicists working in the area of integrable and solvable non-linear evolution equations; it can also be used as supplementary reading material for general applied mathematics or mathematical physics courses.
This book provides a historical account of the discovery in 1834 of a remarkable singular wave that was ultimately to lead to the development of modern soliton theory with its diverse physical applications. In terms of associated geometry, the classical work of Bäcklund and Bianchi and its consequences is recounted, notably with regard to nonlinear superposition principles, which later were shown to be generic to soliton systems and which provide the analytic description of complex multi-soliton interaction. Whereas the applications of modern soliton in certain areas of physics are well-documented, deep connections between soliton theory and nonlinear continuum mechanics have had a separate development. This book describes wide applications in such disparate areas as elastostatics, elastodynamics, superelasticity, shell theory, magnetohydrostatics and magnetohydrodynamics, and will appeal to research scientists and advanced students with an interest in integrable systems in nonlinear physics or continuum mechanics.
Identifies specific print and broadcast sources of news and advertising for trade, business, labor, and professionals. Arrangement is geographic with a thumbnail description of each local market. Indexes are classified (by format and subject matter) and alphabetical (by name and keyword).
A dynamical system is called isochronous if it features in its phase space an open, fully-dimensional region where all its solutions are periodic in all its degrees of freedom with the same, fixed period. Recently a simple transformation has been introduced, applicable to quite a large class of dynamical systems, that yields autonomous systems which are isochronous. This justifies the notion that isochronous systems are not rare. In this book the procedure to manufacture isochronous systems is reviewed, and many examples of such systems are provided. Examples include many-body problems characterized by Newtonian equations of motion in spaces of one or more dimensions, Hamiltonian systems, and also nonlinear evolution equations (PDEs). The book shall be of interest to students and researchers working on dynamical systems, including integrable and nonintegrable models, with a finite or infinite number of degrees of freedom. It might be used as a basic textbook, or as backup material for an undergraduate or graduate course.