You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book describes most recent progress in the properties, synthesis, characterization, modelling, and applications of nanomaterials and nanodevices. It begins with the review of the modelling of the structural, electronic and optical properties of low dimensional and nanoscale semiconductors, methodology of synthesis, and characterization of quantum dots and nanowires, with special attention towards Dirac materials, whose electrical conduction and sensing properties far exceed those of silicon-based materials, making them strong competitors. The contributed reviews presented in this book touch on broader issues associated with the environment, as well as energy production and storage, whil...
This book is an introduction to the principles of semiconductor physics, linking its scientific aspects with practical applications. It is addressed to both readers who wish to learn semiconductor physics and those seeking to understand semiconductor devices. It is particularly well suited for those who want to do both.Intended as a teaching vehicle, the book is written in an expository manner aimed at conveying a deep and coherent understanding of the field. It provides clear and complete derivations of the basic concepts of modern semiconductor physics. The mathematical arguments and physical interpretations are well balanced: they are presented in a measure designed to ensure the integrit...
This book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.
Starting with the first transistor in 1949, the world has experienced a technological revolution which has permeated most aspects of modern life, particularly over the last generation. Yet another such revolution looms up before us with the newly developed capability to control matter on the nanometer scale. A truly extraordinary research effort, by scientists, engineers, technologists of all disciplines, in nations large and small throughout the world, is directed and vigorously pressed to develop a full understanding of the properties of matter at the nanoscale and its possible applications, to bring to fruition the promise of nanostructures to introduce a new generation of electronic and ...
This review volume is based primarily on the balance equation approach developed since 1984. It provides a simple and analytical description about hot electron transport, particularly, in semiconductors with higher carrier density where the carrier-carrier collision is much stronger than the single particle scattering. The steady state and time-dependent hot electron transport, thermal noise, hot phonon effect, the memory effect, and other related subjects of charge carriers under strong electric fields are reviewed. The application of Zubarev's nonequilibrium statistical operator to hot electron transport and its equivalence to the balance equation method are also presented. For semiconductors with very low carrier density, the problem can be regarded as a single carrier transport which will be treated non-perturbatively by the nonequilibrium Green's function technique and the path integral theory. The last part of this book consists of a chapter on the dynamic conductivity and the shot noise suppression of a double-carrier resonant tunneling system.
None