You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Includes up-to-date material on recent developments and topics of significant interest, such as elliptic functions and the new primality test Selects material from both the algebraic and analytic disciplines, presenting several different proofs of a single result to illustrate the differing viewpoints and give good insight
This introduction to algebraic number theory discusses the classical concepts from the viewpoint of Arakelov theory. The treatment of class theory is particularly rich in illustrating complements, offering hints for further study, and providing concrete examples. It is the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available.
The sixth edition of the classic undergraduate text in elementary number theory includes a new chapter on elliptic curves and their role in the proof of Fermat's Last Theorem, a foreword by Andrew Wiles and extensively revised and updated end-of-chapter notes.
During the academic year 1916-1917 I had the good fortune to be a student of the great mathematician and distinguished teacher Adolf Hurwitz, and to attend his lectures on the Theory of Functions at the Polytechnic Institute of Zurich. After his death in 1919 there fell into my hands a set of notes on the Theory of numbers, which he had delivered at the Polytechnic Institute. This set of notes I revised and gave to Mrs. Ferentinou-Nicolacopoulou with a request that she read it and make relevant observations. This she did willingly and effectively. I now take advantage of these few lines to express to her my warmest thanks. Athens, November 1984 N. Kritikos About the Authors ADOLF HURWITZ was...
Challenging, accessible mathematical adventures involving prime numbers, number patterns, irrationals and iterations, calculating prodigies, and more. No special training is needed, just high school mathematics and an inquisitive mind. "A splendidly written, well selected and presented collection. I recommend the book unreservedly to all readers." — Martin Gardner.
This edition has been called ‘startlingly up-to-date’, and in this corrected second printing you can be sure that it’s even more contemporaneous. It surveys from a unified point of view both the modern state and the trends of continuing development in various branches of number theory. Illuminated by elementary problems, the central ideas of modern theories are laid bare. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a synthesis of various theories.
To Number Theory Translated from the Chinese by Peter Shiu With 14 Figures Springer-Verlag Berlin Heidelberg New York 1982 HuaLooKeng Institute of Mathematics Academia Sinica Beijing The People's Republic of China PeterShlu Department of Mathematics University of Technology Loughborough Leicestershire LE 11 3 TU United Kingdom ISBN -13 : 978-3-642-68132-5 e-ISBN -13 : 978-3-642-68130-1 DOl: 10.1007/978-3-642-68130-1 Library of Congress Cataloging in Publication Data. Hua, Loo-Keng, 1910 -. Introduc tion to number theory. Translation of: Shu lun tao yin. Bibliography: p. Includes index. 1. Numbers, Theory of. I. Title. QA241.H7513.5 12'.7.82-645. ISBN-13:978-3-642-68132-5 (U.S.). AACR2 This w...
This book leads readers from simple number work to the point where they can prove the classical results of elementary number theory for themselves.
This well-developed, accessible text details the historical development of the subject throughout. It also provides wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. This second edition contains two new chapters that provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers and an overview of recent progress on the arithmetic of elliptic curves.
The central theme of this book is the solution of Diophantine equations, i.e., equations or systems of polynomial equations which must be solved in integers, rational numbers or more generally in algebraic numbers. This theme, in particular, is the central motivation for the modern theory of arithmetic algebraic geometry. In this text, this is considered through three of its most basic aspects. The book contains more than 350 exercises and the text is largely self-contained. Much more sophisticated techniques have been brought to bear on the subject of Diophantine equations, and for this reason, the author has included five appendices on these techniques.