You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Adaptive Control of Linear Hyperbolic PDEs provides a comprehensive treatment of adaptive control of linear hyperbolic systems, using the backstepping method. It develops adaptive control strategies for different combinations of measurements and actuators, as well as for a range of different combinations of parameter uncertainty. The book treats boundary control of systems of hyperbolic partial differential equations (PDEs) with uncertain parameters. The authors develop designs for single equations, as well as any number of coupled equations. The designs are accompanied by mathematical proofs, which allow the reader to gain insight into the technical challenges associated with adaptive contr...
This book deals with the class of singular systems with random abrupt changes also known as singular Markovian jump systems. Various problems and their robustness are tackled. The book examines both the theoretical and practical aspects of the control problems from the angle of the structural properties of linear systems. It can be used as a textbook as well as a reference for researchers in control or mathematics with interest in control theory.
This accessible book pioneers feedback concepts for control mixing. It reviews research results appearing over the last decade, and contains control designs for stabilization of channel, pipe and bluff body flows, as well as control designs for the opposite problem of mixing enhancement.
Moving on from earlier stochastic and robust control paradigms, this book introduces the fundamentals of probabilistic methods in the analysis and design of uncertain systems. The use of randomized algorithms, guarantees a reduction in the computational complexity of classical robust control algorithms and in the conservativeness of methods like H-infinity control. Features: • self-contained treatment explaining randomized algorithms from their genesis in the principles of probability theory to their use for robust analysis and controller synthesis; • comprehensive treatment of sample generation, including consideration of the difficulties involved in obtaining independent and identically distributed samples; • applications in congestion control of high-speed communications networks and the stability of quantized sampled-data systems. This monograph will be of interest to theorists concerned with robust and optimal control techniques and to all control engineers dealing with system uncertainties.
This monograph explores the design of controllers that suppress oscillations and instabilities in congested traffic flow using PDE backstepping methods. The first part of the text is concerned with basic backstepping control of freeway traffic using the Aw-Rascle-Zhang (ARZ) second-order PDE model. It begins by illustrating a basic control problem – suppressing traffic with stop-and-go oscillations downstream of ramp metering – before turning to the more challenging case for traffic upstream of ramp metering. The authors demonstrate how to design state observers for the purpose of stabilization using output-feedback control. Experimental traffic data are then used to calibrate the ARZ mo...
Data-Based Controller Design presents a comprehensive analysis of data-based control design. It brings together the different data-based design methods that have been presented in the literature since the late 1990’s. To the best knowledge of the author, these data-based design methods have never been collected in a single text, analyzed in depth or compared to each other, and this severely limits their widespread application. In this book these methods will be presented under a common theoretical framework, which fits also a large family of adaptive control methods: the MRAC (Model Reference Adaptive Control) methods. This common theoretical framework has been developed and presented very...
This book introduces a comprehensive methodology for adaptive control design of parabolic partial differential equations with unknown functional parameters, including reaction-convection-diffusion systems ubiquitous in chemical, thermal, biomedical, aerospace, and energy systems. Andrey Smyshlyaev and Miroslav Krstic develop explicit feedback laws that do not require real-time solution of Riccati or other algebraic operator-valued equations. The book emphasizes stabilization by boundary control and using boundary sensing for unstable PDE systems with an infinite relative degree. The book also presents a rich collection of methods for system identification of PDEs, methods that employ Lyapunov, passivity, observer-based, swapping-based, gradient, and least-squares tools and parameterizations, among others. Including a wealth of stimulating ideas and providing the mathematical and control-systems background needed to follow the designs and proofs, the book will be of great use to students and researchers in mathematics, engineering, and physics. It also makes a valuable supplemental text for graduate courses on distributed parameter systems and adaptive control.
There are plenty of challenging and interesting problems open for investigation in the field of switched systems. Stability issues help to generate many complex nonlinear dynamic behaviors within switched systems. The authors present a thorough investigation of stability effects on three broad classes of switching mechanism: arbitrary switching where stability represents robustness to unpredictable and undesirable perturbation, constrained switching, including random (within a known stochastic distribution), dwell-time (with a known minimum duration for each subsystem) and autonomously-generated (with a pre-assigned mechanism) switching; and designed switching in which a measurable and freely-assigned switching mechanism contributes to stability by acting as a control input. For each of these classes this book propounds: detailed stability analysis and/or design, related robustness and performance issues, connections to other control problems and many motivating and illustrative examples.
A unified and systematic description of analysis and decision problems within a wide class of uncertain systems, described by traditional mathematical methods and by relational knowledge representations. Prof. Bubnicki takes a unique approach to stability and stabilization of uncertain systems.
Although the problem of nonlinear controller design is as old as that of linear controller design, the systematic design methods framed in response are more sparse. Given the range and complexity of nonlinear systems, effective new methods of control design are therefore of significant importance. Dynamic Surface Control of Uncertain Nonlinear Systems provides a theoretically rigorous and practical introduction to nonlinear control design. The convex optimization approach applied to good effect in linear systems is extended to the nonlinear case using the new dynamic surface control (DSC) algorithm developed by the authors. A variety of problems – DSC design, output feedback, input saturat...