Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Motivic Homotopy Theory
  • Language: en
  • Pages: 228

Motivic Homotopy Theory

This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.

Motivic Homotopy Theory and Refined Enumerative Geometry
  • Language: en
  • Pages: 288

Motivic Homotopy Theory and Refined Enumerative Geometry

This volume contains the proceedings of the Workshop on Motivic Homotopy Theory and Refined Enumerative Geometry, held from May 14–18, 2018, at the Universität Duisburg-Essen, Essen, Germany. It constitutes an accessible yet swift introduction to a new and active area within algebraic geometry, which connects well with classical intersection theory. Combining both lecture notes aimed at the graduate student level and research articles pointing towards the manifold promising applications of this refined approach, it broadly covers refined enumerative algebraic geometry.

Motivic Homotopy Theory
  • Language: en
  • Pages: 226

Motivic Homotopy Theory

  • Type: Book
  • -
  • Published: 2009-09-02
  • -
  • Publisher: Springer

This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.

Motivic Homotopy Theory and Refined Enumerative Geometry
  • Language: en
  • Pages: 267

Motivic Homotopy Theory and Refined Enumerative Geometry

  • Type: Book
  • -
  • Published: 2020
  • -
  • Publisher: Unknown

This volume contains the proceedings of the Workshop on Motivic Homotopy Theory and Refined Enumerative Geometry, held from May 14-18, 2018, at the Universität Duisburg-Essen, Essen, Germany. It constitutes an accessible yet swift introduction to a new and active area within algebraic geometry, which connects well with classical intersection theory. Combining both lecture notes aimed at the graduate student level and research articles pointing towards the manifold promising applications of this refined approach, it broadly covers refined enumerative algebraic geometry.

Foundations of Stable Homotopy Theory
  • Language: en
  • Pages: 432

Foundations of Stable Homotopy Theory

The beginning graduate student in homotopy theory is confronted with a vast literature on spectra that is scattered across books, articles and decades. There is much folklore but very few easy entry points. This comprehensive introduction to stable homotopy theory changes that. It presents the foundations of the subject together in one place for the first time, from the motivating phenomena to the modern theory, at a level suitable for those with only a first course in algebraic topology. Starting from stable homotopy groups and (co)homology theories, the authors study the most important categories of spectra and the stable homotopy category, before moving on to computational aspects and more advanced topics such as monoidal structures, localisations and chromatic homotopy theory. The appendix containing essential facts on model categories, the numerous examples and the suggestions for further reading make this a friendly introduction to an often daunting subject.

The Zoological Record
  • Language: en
  • Pages: 1344

The Zoological Record

  • Type: Book
  • -
  • Published: 1998
  • -
  • Publisher: Unknown

None

Cycles, Transfers, and Motivic Homology Theories. (AM-143)
  • Language: en
  • Pages: 262

Cycles, Transfers, and Motivic Homology Theories. (AM-143)

The original goal that ultimately led to this volume was the construction of "motivic cohomology theory," whose existence was conjectured by A. Beilinson and S. Lichtenbaum. This is achieved in the book's fourth paper, using results of the other papers whose additional role is to contribute to our understanding of various properties of algebraic cycles. The material presented provides the foundations for the recent proof of the celebrated "Milnor Conjecture" by Vladimir Voevodsky. The theory of sheaves of relative cycles is developed in the first paper of this volume. The theory of presheaves with transfers and more specifically homotopy invariant presheaves with transfers is the main theme of the second paper. The Friedlander-Lawson moving lemma for families of algebraic cycles appears in the third paper in which a bivariant theory called bivariant cycle cohomology is constructed. The fifth and last paper in the volume gives a proof of the fact that bivariant cycle cohomology groups are canonically isomorphic (in appropriate cases) to Bloch's higher Chow groups, thereby providing a link between the authors' theory and Bloch's original approach to motivic (co-)homology.

Charlie Changes Into a Chicken
  • Language: en
  • Pages: 204

Charlie Changes Into a Chicken

  • Type: Book
  • -
  • Published: 2019-02-02
  • -
  • Publisher: Penguin UK

The first book in a hilarious new series for fans of Roald Dahl and David Walliams! Shortlisted for the Waterstones Children's Book Prize! Longlisted for the Brandford Boase Award! Longlisted for the Blue Peter Award! The Guardian and The Telegraph's Children's Book of the Year! _______ Charlie McGuffin has an incredible secret . . . He can change into animals. All sorts of animals: a flea, a pigeon, even a rhino. Trouble is, he can't decide when - it only happens when he gets worried. And right now, Charlie has quite a lot to worry about: · His brother (who is in hospital) · His parents (who are panicking about it) · And the school bully (who has Charlie in his sights) And even though ev...

Model Categories and Their Localizations
  • Language: en
  • Pages: 482

Model Categories and Their Localizations

The aim of this book is to explain modern homotopy theory in a manner accessible to graduate students yet structured so that experts can skip over numerous linear developments to quickly reach the topics of their interest. Homotopy theory arises from choosing a class of maps, called weak equivalences, and then passing to the homotopy category by localizing with respect to the weak equivalences, i.e., by creating a new category in which the weak equivalences are isomorphisms. Quillen defined a model category to be a category together with a class of weak equivalences and additional structure useful for describing the homotopy category in terms of the original category. This allows you to make...

An Introduction to Homological Algebra
  • Language: en
  • Pages: 470

An Introduction to Homological Algebra

The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.