Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

The Geometry of Cubic Hypersurfaces
  • Language: en
  • Pages: 462

The Geometry of Cubic Hypersurfaces

Cubic hypersurfaces are described by almost the simplest possible polynomial equations, yet their behaviour is rich enough to demonstrate many of the central challenges in algebraic geometry. With exercises and detailed references to the wider literature, this thorough text introduces cubic hypersurfaces and all the techniques needed to study them. The book starts by laying the foundations for the study of cubic hypersurfaces and of many other algebraic varieties, covering cohomology and Hodge theory of hypersurfaces, moduli spaces of those and Fano varieties of linear subspaces contained in hypersurfaces. The next three chapters examine the general machinery applied to cubic hypersurfaces of dimension two, three, and four. Finally, the author looks at cubic hypersurfaces from a categorical point of view and describes motivic features. Based on the author's lecture courses, this is an ideal text for graduate students as well as an invaluable reference for researchers in algebraic geometry.

Higher Dimensional Varieties and Rational Points
  • Language: en
  • Pages: 307

Higher Dimensional Varieties and Rational Points

Exploring the connections between arithmetic and geometric properties of algebraic varieties has been the object of much fruitful study for a long time, especially in the case of curves. The aim of the Summer School and Conference on "Higher Dimensional Varieties and Rational Points" held in Budapest, Hungary during September 2001 was to bring together students and experts from the arithmetic and geometric sides of algebraic geometry in order to get a better understanding of the current problems, interactions and advances in higher dimension. The lecture series and conference lectures assembled in this volume give a comprehensive introduction to students and researchers in algebraic geometry and in related fields to the main ideas of this rapidly developing area.

Current Developments in Algebraic Geometry
  • Language: en
  • Pages: 437

Current Developments in Algebraic Geometry

This volume, based on a workshop by the MSRI, offers an overview of the state of the art in many areas of algebraic geometry.

Algebraic Geometry and Number Theory
  • Language: en
  • Pages: 240

Algebraic Geometry and Number Theory

  • Type: Book
  • -
  • Published: 2017-05-07
  • -
  • Publisher: Birkhäuser

This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.

Three Courses on Partial Differential Equations
  • Language: en
  • Pages: 171

Three Courses on Partial Differential Equations

Modeling, in particular with partial differential equations, plays an ever growing role in the applied sciences. Hence its mathematical understanding is an important issue for today's research. This book provides an introduction to three different topics in partial differential equations arising from applications. The subject of the first course by Michel Chipot (Zurich) is equilibrium positions of several disks rolling on a wire. In particular, existence and uniqueness of and the exact position for an equilibrium are discussed. The second course by Josselin Garnier (Toulouse) deals with problems arising from acoustics and geophysics where waves propagate in complicated media, the properties...

Positivity in Algebraic Geometry II
  • Language: en
  • Pages: 392

Positivity in Algebraic Geometry II

  • Type: Book
  • -
  • Published: 2017-07-25
  • -
  • Publisher: Springer

Two volume work containing a contemporary account on "Positivity in Algebraic Geometry". Both volumes also available as hardcover editions as Vols. 48 and 49 in the series "Ergebnisse der Mathematik und ihrer Grenzgebiete". A good deal of the material has not previously appeared in book form. Volume II is more at the research level and somewhat more specialized than Volume I. Volume II contains a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. Contains many concrete examples, applications, and pointers to further developments

Galois Groups and Fundamental Groups
  • Language: en
  • Pages: 281

Galois Groups and Fundamental Groups

Ever since the concepts of Galois groups in algebra and fundamental groups in topology emerged during the nineteenth century, mathematicians have known of the strong analogies between the two concepts. This book presents the connection starting at an elementary level, showing how the judicious use of algebraic geometry gives access to the powerful interplay between algebra and topology that underpins much modern research in geometry and number theory. Assuming as little technical background as possible, the book starts with basic algebraic and topological concepts, but already presented from the modern viewpoint advocated by Grothendieck. This enables a systematic yet accessible development of the theories of fundamental groups of algebraic curves, fundamental groups of schemes, and Tannakian fundamental groups. The connection between fundamental groups and linear differential equations is also developed at increasing levels of generality. Key applications and recent results, for example on the inverse Galois problem, are given throughout.

Positivity in algebraic geometry 2
  • Language: en
  • Pages: 412

Positivity in algebraic geometry 2

This two volume work on "Positivity in Algebraic Geometry" contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Whereas Volume I is more elementary, the present Volume II is more at the research level and somewhat more specialized. Both volumes are also available as hardcover edition as Vols. 48 and 49 in the series "Ergebnisse der Mathematik und ihrer Grenzgebiete".

Brauer Groups and Obstruction Problems
  • Language: en
  • Pages: 251

Brauer Groups and Obstruction Problems

  • Type: Book
  • -
  • Published: 2017-03-02
  • -
  • Publisher: Birkhäuser

The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex...

Theta Functions, Bowdoin 1987
  • Language: en
  • Pages: 730

Theta Functions, Bowdoin 1987

During his long and productive career, Salomon Bochner worked in a variety of different areas of mathematics. This four part set brings together his collected papers, illustrating the range and depth of his mathematical interests. The books are available either individually or as a set.