Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Galois Groups and Fundamental Groups
  • Language: en
  • Pages: 281

Galois Groups and Fundamental Groups

Ever since the concepts of Galois groups in algebra and fundamental groups in topology emerged during the nineteenth century, mathematicians have known of the strong analogies between the two concepts. This book presents the connection starting at an elementary level, showing how the judicious use of algebraic geometry gives access to the powerful interplay between algebra and topology that underpins much modern research in geometry and number theory. Assuming as little technical background as possible, the book starts with basic algebraic and topological concepts, but already presented from the modern viewpoint advocated by Grothendieck. This enables a systematic yet accessible development of the theories of fundamental groups of algebraic curves, fundamental groups of schemes, and Tannakian fundamental groups. The connection between fundamental groups and linear differential equations is also developed at increasing levels of generality. Key applications and recent results, for example on the inverse Galois problem, are given throughout.

The Arithmetic of Fundamental Groups
  • Language: en
  • Pages: 387

The Arithmetic of Fundamental Groups

In the more than 100 years since the fundamental group was first introduced by Henri Poincaré it has evolved to play an important role in different areas of mathematics. Originally conceived as part of algebraic topology, this essential concept and its analogies have found numerous applications in mathematics that are still being investigated today, and which are explored in this volume, the result of a meeting at Heidelberg University that brought together mathematicians who use or study fundamental groups in their work with an eye towards applications in arithmetic. The book acknowledges the varied incarnations of the fundamental group: pro-finite, l-adic, p-adic, pro-algebraic and motivi...

The Geometry of Algebraic Cycles
  • Language: en
  • Pages: 202

The Geometry of Algebraic Cycles

The subject of algebraic cycles has its roots in the study of divisors, extending as far back as the nineteenth century. Since then, and in particular in recent years, algebraic cycles have made a significant impact on many fields of mathematics, among them number theory, algebraic geometry, and mathematical physics. The present volume contains articles on all of the above aspects of algebraic cycles. It also contains a mixture of both research papers and expository articles, so that it would be of interest to both experts and beginners in the field.

Central Simple Algebras and Galois Cohomology
  • Language: en
  • Pages: 431

Central Simple Algebras and Galois Cohomology

The first comprehensive modern introduction to central simple algebra starting from the basics and reaching advanced results.

A Guide to Groups, Rings, and Fields
  • Language: en
  • Pages: 329

A Guide to Groups, Rings, and Fields

  • Type: Book
  • -
  • Published: 2012
  • -
  • Publisher: MAA

Insightful overview of many kinds of algebraic structures that are ubiquitous in mathematics. For researchers at graduate level and beyond.

Arithmetic, Geometry, Cryptography and Coding Theory
  • Language: en
  • Pages: 322

Arithmetic, Geometry, Cryptography and Coding Theory

This volume contains the proceedings of the 17th International Conference on Arithmetic, Geometry, Cryptography and Coding Theory (AGC2T-17), held from June 10–14, 2019, at the Centre International de Rencontres Mathématiques in Marseille, France. The conference was dedicated to the memory of Gilles Lachaud, one of the founding fathers of the AGC2T series. Since the first meeting in 1987 the biennial AGC2T meetings have brought together the leading experts on arithmetic and algebraic geometry, and the connections to coding theory, cryptography, and algorithmic complexity. This volume highlights important new developments in the field.

Recent Developments in Algebraic Geometry
  • Language: en
  • Pages: 368

Recent Developments in Algebraic Geometry

Written in celebration of Miles Reid's 70th birthday, this illuminating volume contains 11 papers by leading mathematicians in and around algebraic geometry, broadly related to the themes and interests of Reid's varied career. Just as in Reid's own scientific output, some of the papers give comprehensive accounts of the state of the art of foundational matters, while others give expositions of subject areas or techniques in concrete terms. Reid has been one of the major expositors of algebraic geometry and a great influence on many in this field – this book hopes to inspire a new generation of graduate students and researchers in his tradition.

Algebra and Coding Theory
  • Language: en
  • Pages: 270

Algebra and Coding Theory

This volume contains the proceedings of the Virtual Conference on Noncommutative Rings and their Applications VII, in honor of Tariq Rizvi, held from July 5–7, 2021, and the Virtual Conference on Quadratic Forms, Rings and Codes, held on July 8, 2021, both of which were hosted by the Université d'Artois, Lens, France. The articles cover topics in commutative and noncommutative algebra and applications to coding theory. In some papers, applications of Frobenius rings, the skew group rings, and iterated Ore extensions to coding theory are discussed. Other papers discuss classical topics, such as Utumi rings, Baer rings, nil and nilpotent algebras, and Brauer groups. Still other articles are devoted to various aspects of the elementwise study for rings and modules. Lastly, this volume includes papers dealing with questions in homological algebra and lattice theory. The articles in this volume show the vivacity of the research of noncommutative rings and its influence on other subjects.

Building Bridges II
  • Language: en
  • Pages: 616

Building Bridges II

This volume collects together research and survey papers written by invited speakers of the conference celebrating the 70th birthday of László Lovász. The topics covered include classical subjects such as extremal graph theory, coding theory, design theory, applications of linear algebra and combinatorial optimization, as well as recent trends such as extensions of graph limits, online or statistical versions of classical combinatorial problems, and new methods of derandomization. László Lovász is one of the pioneers in the interplay between discrete and continuous mathematics, and is a master at establishing unexpected connections, “building bridges” between seemingly distant fields. His invariably elegant and powerful ideas have produced new subfields in many areas, and his outstanding scientific work has defined and shaped many research directions in the last 50 years. The 14 contributions presented in this volume, all of which are connected to László Lovász's areas of research, offer an excellent overview of the state of the art of combinatorics and related topics and will be of interest to experienced specialists as well as young researchers.

Hodge Theory
  • Language: en
  • Pages: 607

Hodge Theory

This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn't require a deep background...