You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.
This book aims at identifying novel advanced materials of extreme wetting properties (MEWP) for practical, industrial applications. The state-of-the art superhdyrophobic, superhdyrophilic, superoleophobic, superoleophilic, and superomniphobic materials, that are MEWP, with respect to their technological and emerging industrial applications are discussed in this book. MEWP offer new perspectives providing numerous potential applications. Hence, these advanced MEWP have the potential to lead to a new generation of products and devices with unique properties and functionalities. Despite the large scientific progress on MEWP there are still some obstacles which have to be solved to make these ma...
Recently, the scientific community has deemed surface modification to be necessary because the surface properties of new materials are usually inadequate in terms of wettability, adhesion, corrosion resistance, or even drag reduction. In order to modify solid surfaces such as metals and alloys, different treatments have been used to obtain a desired surface finish, including chemical vapor deposition, physical vapor deposition, chemical etching, electrodeposition, or the application of non-equilibrium gaseous media, especially gaseous plasma. These treatments promote changes in roughness, hydrophobicity, biocompatibility, or reactivity. Although such treatments have been studied extensively ...
Thoroughly revised and reorganized, the second edition of Interfacial Forces in Aqueous Media examines the role of polar interfacial and noncovalent interactions among biological and nonbiological macromolecules as well as biopolymers, particles, surfaces, cells, and both polar and apolar polymers. The book encompasses Lifshitz-van de
None
This book provides a thorough introduction to the essential topics in modern materials science. It brings together the spectrum of materials science topics, spanning inorganic and organic materials, nanomaterials, biomaterials, and alloys within a single cohesive and comprehensive resource. Synthesis and processing techniques, structural and crystallographic configurations, properties, classifications, process mechanisms, applications, and related numerical problems are discussed in each chapter. End-of-chapter summaries and problems are included to deepen and reinforce the reader's comprehension. Provides a cohesive and comprehensive reference on a wide range of materials and processes in modern materials science; Presents material in an engaging manner to encourage innovative practices and perspectives; Includes chapter summaries and problems at the end of every chapter for reinforcement of concepts.
During the past decade, the superhydrophobic surfaces, bio-inspired non-wettable surfaces, have aroused worldwide interest. The super water-repellant surface has special characteristics such as low surface energy as well as hierarchical micro/nano surface roughness. These surfaces have many practical applications, from industrial to biomedical applications, including water/oil separation, self-cleaning, drag reduction, anti-fogging, anti-bacterial, anti-fouling, anti-icing, corrosion resistance, as well as many applications in industries such as marine, oil, and gas, aerospace, biomedicine etc. This book presents knowledge on the field of application of superhydrophobic surfaces. Superhydrophobicity has become a hot topic in the academics as well as industries in different engineering and biomedicine research fields.
Nanodroplets, the basis of complex and advanced nanostructures such as quantum rings, quantum dots and quantum dot clusters for future electronic and optoelectronic materials and devices, have attracted the interdisciplinary interest of chemists, physicists and engineers. This book combines experimental and theoretical analyses of nanosized droplets which reveal many attractive properties. Coverage includes nanodroplet synthesis, structure, unique behaviors and their nanofabrication, including chapters on focused ion beam, atomic force microscopy, molecular beam epitaxy and the "vapor-liquid- solid" route. Particular emphasis is given to the behavior of metallic nanodroplets, water nanodroplets and nanodroplets in polymer and metamaterial nanocomposites. The contributions of leading scientists and their research groups will provide readers with deeper insight into the chemical and physical mechanisms, properties, and potential applications of various nanodroplets.
Materials of extreme wetting properties have received significant attention, as they offer new perspectives providing numerous potential applications. Water- and oil-repellent surfaces can be used, for instance, in the automobile, microelectronics, textile and biomedical industries; in the protection and preservation of constructions, buildings and cultural heritage; and in several other applications relevant to self-cleaning, biocide treatments, oil-water separation and anti-corrosion, just to name a few. The papers included in this book present innovative production methods of advanced materials with extreme wetting properties that are designed to serve some of the abovementioned applications. Moreover, the papers explore the scientific principles behind these advanced materials and discuss their applications to different areas of coating technology.
Advances in Oil-Water Separation: A Complete Guide for Physical, Chemical, and Biochemical Processes discusses a broad variety of chemical, physical and biochemical processes, including skimming, membrane separation, adsorption, onsite chemical reactions, burning and usage of suitable microbial strains for onsite degradation of oil. It critically reviews all current developments in oil-water separation processes and technologies, identifies gaps and illuminates the scope for future research and development in the field. This book provides researchers, engineers and environmental professionals working in oil recovery and storage with solutions for disposal of waste oil and separation of oil f...